

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme 2014-2020 under grant agreement No 786727

Integrated Framework for Predictive and Collaborative Security
of Financial Infrastructures

Start Date of Project: 2018-05-01

Duration: 36 months

D5.1 Report on Integrated BigData
Infrastructure - I

Deliverable Details

Deliverable Number D5.1

Deliverable Title Report on Integrated BigData Infrastructure - I

Revision Number 3.0

Author(s) GFT

Due Date 28/02/2019

Delivered Date

Reviewed by CNR, IBM

Dissemination Level PU

EC Project Officer Christoph CASTEX

No. Contributing Partner

1. GFT (author)

2. CNR (reviewer)

3. IBM (contributor & reviewer)

4. HPE (contributor)

5. INNOV (contributor)

6. ORT (contributor)

7. FBK (contributor)

Document Status
 draft

 Consortium reviewed

 WP leader accepted

 Project coordinator accepted

Project Number: 786727 - FINSEC D5.1 Report on Integrated BigData Infrastructure - I

FINSEC | Introduction 2

Revision History
Version By Date Changes

1.0 GFT 01/02/2019 Initial ToC, bullet points, Lorem Ipsum examples

1.1 GFT 18/02/2019 Complete draft ready for Peer Review

2.0 CNR, IBM 22/02/2019 Document amended and commented after Peer review

2.1 GFT 25/02/2019 Complete document ready for QA review

3.0 GFT 28/02/2019 Final version for submission

Project Number: 786727 - FINSEC D5.1 Report on Integrated Big Data Infrastructure - I

FINSEC | Introduction 3

Executive Summary
FINSEC BIG DATA INFRASTRUCTURE aims to provide a complete stack comprising an infrastructure
management system to support the analysis and prediction algorithms of the FINSEC platform,
managing the historical and real data of the security, the knowledge base and the description of the
assets, being completely scalable, adaptable to runtime and high performance.

In this way, FINSEC BIG DATA INFRASTRUCTURE will respond to the needs of big data operations and
data intensive applications. The system will base all infrastructure management decisions on data
analysis, monitoring data from implementations and the logic derived from data operations that
govern and influence storage, compute and network resources, as well as their interdependencies. In
addition to the infrastructure management system, "Data as a Service" will be offered to data
providers, decision makers, private and public organizations. Approaches to data cleansing, data
layout and efficient storage, combined with seamless data analysis, will be holistically implemented
across multiple data stores and locations.

In order to provide the information required for better management of the infrastructure, FINSEC BIG
DATA INFRASTRUCTURE will provide a set of basic services, such as the CRUD DB interface, which
facilitates the analysis and sizing of data-driven applications in terms of service forecasting required
data, their interdependencies with the micro-services application and the underlying resources
required. This will allow the identification of data properties of their applications and their data
requirements, thus enabling FINISEC BIG DATA INFRASTRUCTURE to perform the deployment with
specific performance and quality assurance. In addition, a data toolkit will allow data scientists to
assimilate their data analysis functions and specify their preferences and constraints, which will be
exploited by the infrastructure management system for resources and data management. Finally, a
process modelling framework will be provided to enable function-based modelling of processes, which
will be mapped to an automated analysis of the process of a concrete technical level.

The aforementioned key results of FINSEC BIG DATA INFRASTRUCTURE are reflected in a set of main
constituent elements in the corresponding general stack architecture. This deliverable describes the
key functionalities of the general architecture, the interactions between the main building blocks and
their components, while providing a first version of the interiors of these components regarding the
research approaches to be implemented during the project. Further detailed information and
specifications of the components will be provided through the relevant design reports and
specification of the relevant project work packages.

Project Number: 786727 - FINSEC D5.1 Report on Integrated Big Data Infrastructure - I

FINSEC | Introduction 4

TABLE OF CONTENTS
1. INTRODUCTION ... 6

1.1. BACKGROUND 6
1.2. DOCUMENT STRUCTURE 7
1.3. RELEVANT TASK INPUT 7
1.4. RELEVANT TASK OUTPUT 7

2. STATE OF THE ART ... 7

2.1. NOSQL SOLUTIONS 8
2.2. NEWSQL SOLUTIONS 10
2.3. COMPARATIVE TABLE OF RELEVANT DATA BASE SOLUTIONS 10
2.4. BIG DATA TOOLS AND APPLICATIONS 15
2.5. APACHE HADOOP FRAMEWORK 15
2.6. APACHE STORM FRAMEWORK 15
2.7. H20.AI FRAMEWORK 16
2.8. APACHE SPARK FRAMEWORK 17
2.9. APACHE KAFKA 17

3. ANALYSIS AND MAPPING OF REQUIREMENTS FOR BIG DATA INFRASTRUCTURE 19

3.1. MAPPING OF REQUIREMENTS FROM FINSEC REFERENCE ARCHITECTURE 19

4. FINSEC BIG DATA INFRASTRUCTURE ... 21

4.1. OPERATION OF THE FINSEC BIG DATA INFRASTRUCTURE 22
4.1.1. ENTRY PHASE 23
4.1.2. MODELLING PHASE 23
4.1.3. ANALYTICS PHASE 23
4.1.4. PREDICTION PHASE 24
4.1.5. PRESENTATION PHASE 24
4.2. FINSEC BIG DATA INFRASTRUCTURE ARCHITECTURE 24
4.3. BUILDING BLOCK STRUCTURE AND FUNCTIONALITIES 25
4.3.1. SECURITY DATABASE (MONGODB) 25
4.3.2. SECURITY DB API 27
4.3.3. ANALYTICS SEARCH ENGINE 30
4.3.4. SYNCHRONIZATION WITH MONGODB 31
4.3.5. ELASTICSEARCH BASIC OPERATIONS 32
4.5. FINSEC BIG DATA INFRASTRUCTURE TECHNICAL INTERFACE 35

5. IMPLEMENTATION AND INTEGRATION ASPECTS .. 36

5.1. DEPLOYMENT INFRASTRUCTURE 36
5.2. FINSEC TECHNOLOGIES TO BE INTEGRATED WITH THE BIGDATA INFRASTRUCTURE 37
5.2.1. ANOMALY DETECTION 38

6. CONCLUSIONS ... 39

ANNEX A - FINSTIX DATA MODEL .. 40

FINSTIX BASIC CONCEPTS ... 40

FINSTIX RELATIONSHIPS ... 46

REFERENCES .. 49

Project Number: 786727 - FINSEC D5.1 Report on Integrated Big Data Infrastructure - I

FINSEC | Introduction 5

List of Tables
Table 1: comparison between DB solutions .. 10
Table 2: comparison between BigData management technologies ... 18
Table 3: Mapping of FINSEC requirements from RA ... 20
Table 4: Create DB interface ... 35
Table 5: Create DB interface ... 35
Table 6: Create DB interface ... 35
Table 7: FINSTIX objects .. 40
Table 8: STIX Relationship Objects .. 46

List of figures
Figure 1: Technical challenges .. 6
Figure 2: MongoDB architecture ... 9
Figure 3: FINSEC Data Tier Architecture .. 19
Figure 4: Core Services .. 21
Figure 5: Phases for BigData infrastructure .. 22
Figure 6: FINSEC BigData Architecture .. 25
Figure 7: GridFS structure ... 26
Figure 8: Automatic sharding for horizontal scale-out ... 29
Figure 9: A sharded cluster in MongoDB... 29
Figure 10: Example of an Elasticsearch cluster ... 31
Figure 11: data synchronization through mongo-connector .. 32
Figure 12: Deployment scenarios .. 37
Figure 13: Anomaly Detection component architecture ... 38

Project Number: 786727 - FINSEC D5.1 Report on Integrated Big Data Infrastructure - I

FINSEC | Introduction 6

1. Introduction

This document describes the solutions to integrate the predictive and collaborative data-driven
machine learning algorithms with a Big Data infrastructure specifically designed for the FINSEC
Platform, called in the following FINSEC BIG DATA INFRASTRUCTURE.

The FINSEC BIG DATA INFRASTRUCTURE starts from the business requirements and use cases analyzed
in the previous tasks of the projects (T2.1, T2.3 and T2.4) and is specifically designed to be hosted in
the cloud in order to work seamlessly with the other applications of the Reference Architecture (D2.4)
to enable the delivery of security services based on the SECaaS paradigm.

The design involves the methods for integration of the data-driven components of the project’s
security toolbox (SIEM, CCTV, Anomaly Detection, Predictive Analytics, RAE, PenTest) over the same
infrastructures, along with the integration of the analytics infrastructure of the project developed in
other WPs.

1.1. Background

The new data-driven industrial revolution highlights the need for big data technologies, to unlock the
potential in various application domains (e.g. finance, security, transportation, healthcare, etc). In this
context, big data analytics frameworks exploit several underlying infrastructure and cluster
management systems.

However, these systems have not been designed and implemented in a “big data context”, and they
instead emphasise and address the computational needs and aspects of applications and services to
be deployed. FINSEC BIG DATA INFRASTRUCTURE aims at addressing these challenges (depicted in
Figure 1) through robust microservices that range from a scalable, runtime-adaptable infrastructure
management system (to support analytics according to data aspects), to techniques for dimensioning
big data applications, modelling and analysis of organizations, assets and physical logical
infrastructure, as well as provisioning data-as-a-service, by exploiting a seamless big data framework.
The Figure 1 shows how a BigData infrastructure can face (by which means and with which benefits)
the previously mentioned challenges.

Figure 1: Technical challenges1

1 GFT, BigDataStack, , D2.4, GA No 779747, 2018

Project Number: 786727 - FINSEC D5.1 Report on Integrated Big Data Infrastructure - I

FINSEC | State of the Art 7

1.2. Document structure

The structure of the document is aimed at covering in a complete way all the aspects of the FINSEC
BIG DATA INFRASTRUCTURE, from the technological background laying behind the design work done
to the integration of the data model into the infrastructure, passing through the functional and
technical requirements coming from the outcomes of the previous activities within the project and
the description of the design features of the infrastructure. The document is structured as follows: the
current section provides the background and context of this task and deliverable, together with an
overview of the relevant input from the previous tasks and the output for the following activities of
the project; Section 2 provides State of the Art relevant to Big Data Infrastructure from both the
database and application points of view; Section 3 is focused on an Analysis and Mapping of the
Requirements from previous tasks and from different aspects of the project; Section 4 represents the
core of the deliverable, and contains the FINSEC BIG DATA INFRASTRUCTURE design including the key
provisions and the overall architecture and a description of the main architecture components;
Section 5 deals with implementation and integration aspects of the infrastructure, with the details
about its deployment for FINSEC purposes; conclusions are drawn in Section 6. The document is
completed by ANNEX A about the data model that was thought for the project.

1.3. Relevant Task Input

The deliverable takes as input some information coming from the previous tasks within the project.
The main input are coming from the definition of the Reference Architecture done in Task 2.5 and
formalized in the Deliverable 2.4, which identifies the boundaries of the data layer, thus setting the
data exchange interfaces between the FINSEC BIG DATA INFRASTRUCTURE and the other relevant
building blocks of the project. Moreover, Task 2.4 dealing with the integrated data model (cyber +
physical information and events) represents an input source for Task 5.1, giving details about the
nature of the data to be exchanged and stored by the infrastructure. Finally, Section 3 explains how
some requirements for the FINSEC BIG DATA INFRASTRUCTURE come from the definition of the
predictive security done in Task 2.3.

1.4. Relevant Task Output

The main outcome of this deliverable, will be the definition of a detailed design architecture and the
choice of the technologies for the BigData infrastructure. This kind of information will be needed in
the following of Task 5.1, where the infrastructure will be implemented and integrated within M18,
with the preparation of Deliverable 5.2. The infrastructure will be integrated together with all the
other modules of the FINSEC platform in Task 5.3 (probes, application, services, infrastructures, etc.)
and tested during WP6 pilot activities.

2. State of the Art
Infrastructural technologies are the core of the Big Data ecosystem. For decades, enterprises relied
on relational databases for processing structured data. However, the volume, velocity and variety of
data mean that relational databases often cannot deliver the performance and latency required to
handle large, complex data. Thus, new database solutions have been emerged in order to provide
advantages in terms of performance, scalability, and suitability for Big Data environments. Among
these solutions, there are NoSQL databases, NewSQL databases, and file storage systems like HDFS
and GFS detailed in the following sections.

Taking into account the FINSEC requirements arising from the previous phases of the project, in
particular the work of WP2 in Tasks T2.3, Task T2.4 and related deliverables D2.3 and D2.4, and

Project Number: 786727 - FINSEC D5.1 Report on Integrated Big Data Infrastructure - I

FINSEC | State of the Art 8

considering the FINSEC DATA MODEL for the Cyber Physical Threat Intelligence (CPTI) in the financial
sector addressed by the FINSEC Platform, in the following sections the most relevant state of the art
solutions to support complex and extensible data models and applications will be analysed.

Moreover, solutions for managing large quantities of data, their ingestion and Big Data infrastructure
will be analysed to form the background on top of which the specific FINSEC BIGDATA
INFRASTRUCTURE will be built.

2.1. NoSQL Solutions

One of the key advances in resolving problem of big data has been the emergence of NoSQL as an
alternative database technology. A very flexible and schema-less data model, horizontal scalability,
distributed architectures, and the use of languages and interfaces that are “not only” SQL typically
characterize this technology. NoSQL is particularly useful for storing unstructured data, which is
growing far more rapidly than structured data and does not fit the relational schemas of RDBMS. The
NoSQL data model does not guarantee ACID properties (Atomicity, Consistency, Isolation and
Durability) but instead it guarantees BASE properties (Basically Available, Soft state, Eventual
consistency). In addition, it is in compliance with the CAP (Consistency, Availability, Partition
tolerance) theorem. NoSQL databases have many data models: Key-Value, Document, Column, Graph
and Multi-model. We focus on document databases because it stores data as documents that are
based on a specific encoding such as JSON, BSON, XML, etc. Although they differ in their data model,
all NoSQL databases allow a relatively simple storage of unstructured, distributed data and achieve
high scalability. They are best adapted for applications that don’t use a fixed schema, or don’t require
ACID operations, and for intensive read and update OLTP (On-Line Transaction Processing) workloads.

A. MongoDB is an open source, document oriented database that is written in C++. In MongoDB,
the documents are mainly stored in BSON (Binary JSON) format which is efficient both in
storage space and scan speed when compared to JSON. MongoDB defines its own query
language. Queries can be performed with complex criteria, conditions, sorting, embedded
documents, etc. It is also possible to use indexing, like in relational databases, which allows
performing faster queries. In addition, MongoDB supports MapReduce, which allows complex
aggregations across documents. The changes to a single-document are guaranteed to be
atomic. The addition of multi-document ACID transactions in MongoDB 4.0 makes it the only
open source data platform to combine the speed, flexibility, and power of the document
model with ACID data integrity guarantees. Through snapshot isolation, transactions provide
a globally consistent view of data, and enforce all-or-nothing execution to maintain data
integrity. MongoDB uses the GridFS, a distributed file system that stores big files in the form
of chunks or parts. Database Sharding can also be applied to allow distribution across multiple
systems for horizontal scalability. Although, MongoDB still supports the master-slave
replication, replica sets are recommended for new production deployments to replicate data
in a cluster. Replica sets are usually used for data redundancy, automated failover, read
scaling, server maintenance without downtime, and disaster recovery. In general, MongoDB
is an excellent choice for projects that deal with massive volumes of data and significant scale-
out requirements where high performance is critical. It also helps in situations where data is
too complicated and heterogeneous to be modelled in a relational schema or enable real-time
analytics. MongoDB is frequently used for large scalable applications like mobile apps, content
management, real-time analytics, and applications involving the Internet of Things.

Project Number: 786727 - FINSEC D5.1 Report on Integrated Big Data Infrastructure - I

FINSEC | State of the Art 9

Figure 2: MongoDB architecture

B. Elasticsearch is a highly scalable open-source full-text search and analytics engine. It is
designed to store, search, and analyze big volumes of data quickly and in near real time. It was
built on top of Apache Lucene, which is an open source search engine library. Elasticsearch
provides a rich, flexible, query language based on JSON called Query DSL (Domain Specific
Language) which allows user to build much more complicated, robust queries. An index in
Elasticsearch is similar to a database in a RDBMS, it can store different types of documents,
update them, and search for them. Each document is a JSON object which consists of zero or
more fields, where each field is either a primitive type or a more complex structure. A
document has a Document type associated with it, however, all documents are schema-free,
which means that two documents of the same type can have different sets of fields. In order
to store a large amount of data that can exceed the hardware limits of a single node,
Elasticsearch provides the ability to subdivide the index into multiple pieces called shards.
Moreover, Elasticsearch allows to make one or more copies of index’s shards into what are
called replica shards. Replication is important for better availability and performance in case
a shard/node fails.

Elasticsearch is based on REST architecture and provides API endpoints to not only perform
CRUD operations over HTTP API calls, but also to enable users to perform cluster monitoring
tasks using REST APIs. REST endpoints also enable users to make changes to clusters and
indices settings dynamically. Elasticsearch operations such as reading or writing data usually
take less than a second to complete which lets Elasticsearch a good choice for near real-time
use cases such as application monitoring and anomaly detection.

C. CouchDB is an Open Source NoSQL Database implemented in concurrency-oriented language
Erlang. It utilizes JSON to store data and JavaScript as its query language. It uses a B-tree index,
updated during data modifications. These modifications have ACID properties on the
document level and the use of MVCC (Multi-Version Concurrency Control) enables readers to
never block. CouchDB’s document manipulation uses optimistic locks by updating an append-
only B-tree for data storage, meaning that data must be periodically compressed. This
compression, in spite of maintaining availability, may hinder performance. Regarding fault-
tolerant replication mechanisms, CouchDB supports both master-slave and master-master
replication that can be used between different instances of CouchDB or on a single instance.
Scaling in CouchDB is achieved by replicating data, a process which is performed
asynchronously. It does not natively support sharding/partitioning. Consistency is guaranteed
in the form of strengthened eventual consistency, and conflict resolution is performed by
selecting the most up to date version (the application layer can later try to merge conflicting
changes, if possible, back into the document).

Project Number: 786727 - FINSEC D5.1 Report on Integrated Big Data Infrastructure - I

FINSEC | State of the Art 10

D. Couchbase is an open source, distributed, NoSQL document-oriented database for latency
sensitive, interactive, always-on (24x7) applications. It is derived from CouchDB and Membase
databases. Couchbase documents are stored as JSON. Data are distributed across nodes and
replicated with a master-master model. The greatest differences compared to CouchDB it’s
the introduction of N1QL, a query language that improves data transformation and
manipulation, and a Memcached-based caching technology that best suits real time access.
Memcached allows to cache data in RAM memory across the cluster nodes what increases the
performance for real-time requirements. The data is also persisted on disk. Couchbase
provides real time data processing by using Kafka, Storm, and Sqoop components and it is
scalable thanks to its identical nodes and automatic sharding.

2.2. NewSQL Solutions

NewSQL is a technology that aims at making current relational SQL more scalable. It’s an attempt to
combine NoSQL and SQL. SQL provides ACID properties but isn’t fast enough when it comes to
concurrency. NoSQL aims at Brewers CAP theorem but doesn’t necessarily provide ACID properties.
NewSQL tries to provide relational DBMS that has same scalability as NoSQL for OLTP while still
providing ACID properties.

The general features of NewSQL technologies are well described by VoltDB, which represents a
general paradigm for this family of solutions.

 VoltDB is an in-memory database, which depends on the main memory for data storage. VoltDB is an
ACID relational database that uses a shared-nothing architecture, ensuring that the data is always
correct and available. The data is organized into memory partitions, and transactions are sent by
clients connected to the database. VoltDB uses horizontal scalability to increase the capacity of the
nodes of the existing database, or the number of nodes in a shared-nothing cluster. For high
availability VoltDB uses partitions which are transparently replicated across multiple servers. If one
fails all data remains available and consistent for continuum operation. Memory performance with
durability on the disk is possible with the VoltDB snapshot. The snapshot is a complete copy of the
database at a certain point in time that is written on the disk. VoltDB uses asynchronous replication
on the WAN (Wide Area Network) for loss recovery. The remote copy is a read-only while it is not
considered to be the primary database. Voltdb is a great choice for use cases where very high
performance and predictably low latency are critical as well as where accurate counting/accounting is
important, such as in policy enforcement, personalization, fraud/anomaly detection, and other
request-response style fast-decisioning and fast data pipeline applications.

2.3. Comparative table of relevant data base solutions

Table 1: comparison between DB solutions

Name Couchbase MemSQL MongoDB Elasticsearch VoltDB

Description JSON-based
document store
derived from
CouchDB with a
Memcached
compatible
interface.
Originally called
Membase.

MySQL wire-
compliant
distributed RDBMS
that combines an
in-memory row-
oriented and a disc-
based column-
oriented storage.

NoSQL database, a

document store.

A distributed, RESTful search

and analytics engine based on

Apache Lucene.

Elasticsearch allows the

combination of many types of

searches such as structured,

unstructured, geo, and metric

Distributed In-
Memory NewSQL
RDBMS Used for
OLTP applications
with a high
frequency of
relatively simple
transactions that
can hold all their
data in memory.

Project Number: 786727 - FINSEC D5.1 Report on Integrated Big Data Infrastructure - I

FINSEC | State of the Art 11

Primary
database

model

Document store Relational DBMS Document store Search engine Relational DBMS

Secondary
database

models

 Document store

Key-value store

Key-value store Document store Key-value store

Website www.couchbase.co
m

www.memsql.com www.mongodb.com www.elastic.co/products/elast
icsearch

www.voltdb.com

documentatio
n

docs.couchbase.co
m

docs.memsql.com docs.mongodb.com/m
anual

www.elastic.co/guide/en
/elasticsearch/reference/
current/index.html

docs.voltdb.com

Developer Couchbase, Inc. MemSQL Inc. MongoDB, Inc. Elastic VoltDB Inc.

Initial release 2011 2013 2009 2010 2010

Current
release

6.0.0, October
2018

6.7, November
2018

4.0.5, December 2018 6.6.0, January 2019 8.4, January 2019

License Open Source,
Apache version 2

Commercial.
Free developer
edition available.

Open Source,
MongoDB Inc.'s Server
Side Public License v1.
Prior versions were
published under GNU
AGPL v3.0.
Commercial licenses
are also available.

Open Source, Apache Version
2; Elastic License

Open Source, AGPL
for Community
Edition.
Commercial license
for Enterprise,
AWS, and Pro
Editions

Cloud Service Yes Yes Yes (MongoDB Atlas

DBaaS)

Yes Yes

Cloud-based
only

no no no no no

Implementatio
n language

C, C++, Go and
Erlang

C++ C++ Java Java, C++

Server
operating

systems

Linux, OS X,
Windows

Linux 64 bit Linux, OS X, Solaris,
Windows

All OS with a Java VM Linux, OS X

Data scheme schema-free Yes Although schema-
free, documents of
the same collection
often follow the same
structure. Optionally
impose all or part of a
schema by defining a
JSON schema.

schema-free, Flexible type
definitions. Once a type is
defined, it is persistent

Yes

XML support no no no no

Project Number: 786727 - FINSEC D5.1 Report on Integrated Big Data Infrastructure - I

FINSEC | State of the Art 12

Secondary
indexes

Yes Yes Yes Yes, All search fields are
automatically indexed

Yes

SQL Support SQL-like query
language (N1QL)

yes, but no triggers
and foreign keys

Read-only SQL queries
via the MongoDB
Connector for BI

SQL-like query language Yes, only a subset of
SQL 99

APIs and other
access

methods

Memcached

protocol

RESTful HTTP API
(only for server
administration)

JDBC

ODBC

proprietary protocol
using JSON

Java API

RESTful HTTP/JSON API

Java API

RESTful HTTP/JSON

API

JDBC

Supported
programming

languages

.Net

C

Clojure

ColdFusion

Erlang

Go

Java

JavaScript

(Node.js)

Perl

PHP

Python

Ruby

Scala

Tcl

Bash

C

C#

Java

JavaScript (Node.js)

Python

C

C#

C++
Erlang
Haskell

Java

JavaScript

Perl

PHP
Python
Ruby

Scala
Through unofficial
drivers :
Actionscript

Clojure

ColdFusion

D

Dart

Delphi

Go

Groovy

Lisp

Lua

MatLab

PowerShell

Prolog

R

Smalltalk

.Net

Groovy

Java

JavaScript

Perl

PHP

Python

Ruby

C#

C++

Go

Java

JavaScript
(Node.js)

PHP

Python
Erlang (Not officially
Supported)

Server-side
scripts (Stored

Procedures)

View functions in
JavaScript

yes JavaScript Yes Java

Triggers Yes, via the TAP
protocol

No No Yes, using the 'percolation'
feature

No

Partitioning
methods

Sharding Sharding Sharding Sharding Sharding

Replication
methods

Master-master

replication

(including cross

data center

replication)

Master-slave
replication

Master-slave
replication

Master-slave
replication

Yes Master-master

replication

Master-slave
replication

Project Number: 786727 - FINSEC D5.1 Report on Integrated Big Data Infrastructure - I

FINSEC | State of the Art 13

MapReduce Yes No Yes ES-Hadoop Connector No

Consistency
concepts

Eventual

Consistency

Immediate
Consistency
(selectable on a
per-operation
basis)

Immediate
Consistency only
within each node

Eventual Consistency

Immediate
Consistency (can be
individually decided
for each write
operation)

Eventual Consistency,
Synchronous doc based
replication. Get by ID may
show delays up to 1 sec.
Configurable write
consistency: one, quorum, all

Strong Consistency

Referential
integrity

(Foreign keys)

No No No (typically not used,
however similar
functionality with
DBRef possible)

No No (FOREIGN KEY
constraints are not
supported)

Transaction
concepts

No, atomic
operations possible
only within a single
document

ACID (Only isolation
level: READ
COMMITED)

Multi-document ACID
Transactions with
snapshot isolation

No ACID (Transactions
are executed single-
threaded within
stored procedures)

Concurrency yes yes, multi-version
concurrency
control (MVCC)

yes Yes Yes, Data access is
serialized by the
server

Durability yes yes yes (Optional) Yes Yes, Snapshots and
command logging

In-memory
capabilities

 yes Yes, In-memory
storage engine
introduced with
MongoDB version 3.2

Memcached and Redis
integration

User concepts User and
Administrator
separation with
password-based
and LDAP
integrated
Authentication

fine grained access
rights according to
SQL-standard

Access rights for users
and roles

 Users and roles
with access to
stored procedures

Real-time

Capabilities

 Yes

Distributed Storage Systems

File storage systems are another solution to deal with large volume of data in distributed
environments. The major ones are Google File Storage (GFS) and Hadoop Data File Storage (HDFS).

A. GFS is a scalable distributed file system developed by Google to meet the needs of its large
distributed data-intensive applications. It is designed for environments that are prone to failures, that
manipulate huge data files by frequent read/append operations, and that need to process data in
batch rather than in real-time. Thus, it is highly fault-tolerant and reliable, and emphasizes on high
throughput rather than low latency.

 B. HDFS is an open source implementation of GFS. It is part of the Apache Hadoop, an open source
framework for distributed storage and distributed processing of large data sets (see below for further
details). The biggest clusters implementing Hadoop are composed of 45 000 machines and store up to
25 petabyte of data.

Project Number: 786727 - FINSEC D5.1 Report on Integrated Big Data Infrastructure - I

FINSEC | State of the Art 14

Project Number: 786727 - FINSEC D5.1 Report on Integrated Big Data Infrastructure - I

FINSEC | State of the Art 15

2.4. BIG DATA TOOLS AND APPLICATIONS

Other basic tools and applications will be evaluated in order to be integrated into the FINSEC BIG DATA
INFRASTRUCTURE. The following subsections present the more relevant ones.

2.5. Apache Hadoop Framework

Apache Hadoop (http://hadoop.apache.org/) is a collection of open-source software utilities to
manage a large network of computers to solve problems involving massive amounts of data and
computation. Hadoop is one of the most important frameworks for working with Big Data. Hadoop
biggest strength is scalability: it upgrades from working on a single node to thousands of nodes (each
offering local computation and storage) without any issue in a seamless manner, allowing the
distributed processing of large data sets across clusters of computers using simple programming
models. Rather than rely on hardware to deliver high-availability, the framework itself is designed to
detect and handle failures at the application layer, so delivering a highly-available service on top of a
cluster of computers, each of which may be prone to failures.

The framework is an actual set of different modules:

● Hadoop Common: The common utilities that support the other Hadoop modules.
● Hadoop Distributed File System (HDFS): A distributed file system that provides high-

throughput access to application data.
● Hadoop YARN: A framework for job scheduling and cluster resource management.
● Hadoop MapReduce: A YARN-based system for parallel processing of large data sets
● Hadoop Ozone: An object store for Hadoop.

Within the major advantages provided by Hadoop it is possible to highlight:

● The framework allows the user to quickly write and test distributed systems. It is
efficient, and it automatic distributes the data and work across the machines and in
turn, utilizes the underlying parallelism of the CPU cores.

● Hadoop does not rely on hardware to provide fault-tolerance and high availability
(FTHA), rather Hadoop library itself has been designed to detect and handle failures
at the application layer.

● Servers can be added or removed from the cluster dynamically and Hadoop continues
to operate without interruption.

● Hadoop (apart from being open source) is compatible on all the platforms since it is
Java based.

Finally, many other Hadoop-related projects have been developed at Apache, which actually realize
an ecosystem of tools that further enrich the Hadoop capabilities.

2.6. Apache Storm framework

Apache Storm (http://storm.apache.org) is a distributed real-time big data-processing system. Storm
is designed to process vast amount of data in a fault-tolerant and horizontal scalable method. It is a
streaming data framework that has the capability of highest ingestion rates. Though Storm is stateless,
it manages distributed environment and cluster state via Apache ZooKeeper
(https://zookeeper.apache.org/). It is simple and enables to execute all kinds of manipulations on real-
time data in parallel. Apache Storm is continuing to be a leader in real-time data analytics. Storm is
easy to setup, operate and it guarantees that every message will be processed through the topology
at least once.

Project Number: 786727 - FINSEC D5.1 Report on Integrated Big Data Infrastructure - I

FINSEC | State of the Art 16

Storm has many use cases: real-time analytics, online machine learning, continuous computation,
distributed RPC, ETL, and more. Storm is fast: a benchmark clocked it at over a million tuples processed
per second per node. It is scalable, fault-tolerant, guarantees your data will be processed, and is easy
to set up and operate.

Within the major advantages provided by Storm it is possible to identify:

● Storm is open source, robust, and user friendly. It could be utilized in small companies as well
as large corporations.

● Storm is fault tolerant, flexible, reliable, and supports any programming language.
● Allows real-time stream processing.
● Storm is unbelievably fast because it has enormous power of processing the data.
● Storm can keep up the performance even under increasing load by adding resources linearly.

It is highly scalable.
● Storm performs data refresh and end-to-end delivery response in seconds or minutes depends

upon the problem. It has very low latency.
● Storm has operational intelligence.
● Storm provides guaranteed data processing even if any of the connected nodes in the cluster

die or messages are lost.

It’s also relevant to briefly compare the features provided by Hadoop and Storm frameworks. Basically
they’re used for analysing big data. Both of them complement each other and differ in some aspects.
Apache Storm does all the operations except persistency, while Hadoop is good at everything but lags
in real-time computation. Storm is designed for Real-time stream processing and it’s stateless, while
Hadoop for Batch processing and it’s stateful. A Storm streaming process can access tens of thousands
messages per second on cluster, while Hadoop HDFS uses MapReduce framework to process vast
amount of data that takes minutes or hours. Storm topology runs until shutdown by the user or an
unexpected unrecoverable failure, while Hadoop MapReduce jobs are executed in a sequential order
and completed eventually. Finally, both are distributed and fault-tolerant.

2.7. H20.AI Framework

H2O.ai (https://www.h2o.ai/) is a framework focused on bringing AI in general and Machine/Deep
Learning in particular to businesses through software. Its flagship product is H2O, the leading open
source platform that makes it easy for financial services, insurance companies, and healthcare
companies to deploy AI and deep learning to solve complex problems. There are several organizations
and data scientists using H20.ai for different objectives such as predictive maintenance and
operational intelligence.

Using in-memory compression, H2O handles billions of data rows in-memory, even with a small
cluster. To make it easier and to create complete analytic workflows, H2O’s platform includes
interfaces for R, Python, Scala, Java, JSON, and CoffeeScript/JavaScript, as well as a built-in web
interface, Flow.

H2O is designed to run in standalone mode, on Hadoop, or within a Spark Cluster, and typically deploys
within minutes. It also includes many common machine learning algorithms, such as:

· generalized linear modeling (linear regression, logistic regression, etc.),

· Naive Bayes,

· Principal components analysis,

· k-means clustering

Project Number: 786727 - FINSEC D5.1 Report on Integrated Big Data Infrastructure - I

FINSEC | State of the Art 17

 H2O implements best-in-class algorithms at scale, such as distributed random forest, gradient
boosting, and deep learning. H2O also includes a Stacked Ensembles method, which finds the optimal
combination of a collection of prediction algorithms using a process known as ”stacking.” With H2O,
one can build thousands of models and compare the results to get the best predictions.

H2O is nurturing a grassroots movement of physicists, mathematicians, and computer scientists to
herald the new wave of discovery with data science by collaborating closely with academic researchers
and industrial data scientists. Stanford university giants Stephen Boyd, Trevor Hastie, and Rob
Tibshirani advise the H2O team on building scalable machine learning algorithms allowing to improve
the performance and results.

2.8. Apache Spark framework

Apache Spark is a recent state-of-the-art map-reduce technology that provides 100x speedup
compared with Hadoop. It supports three different execution modes: batch, streaming and structured
streaming (Spark Streaming). The batch mode is the most basic and provides API to process a batch of
data. Streaming and spark streaming supports creating a streaming pipeline, where the input data
arrives as a stream (e.g., Kafka stream) and processed as micro-batches. The main difference between
Spark streaming and Structured Spark streaming is that the latter provides API to handle out-of-order
events and represents a stream as an infinite table, while the former creates micro-batches to be
processed sequentially by the pipeline.

Apache Spark is strongly supported both by academy and industry with a rich ecosystem for processing
data from different data sources. It includes Machine Learning library and Graph analytics that simplify
creation of scalable analytics by leveraging already implemented algorithms.

The core of Spark is based on Resilient Distributed Data (RDD) and DAG scheduler that provides fault-
tolerance in case of cluster nodes failures. Spark provides a higher level Dataframe data structure as
an abstraction of tables. Spark application can be developed in Java, Scala, Python or R.

2.9. Apache Kafka

Apache Kafka is an open-source stream-processing software platform aiming to provide a unified,
high-throughput, low-latency platform for handling real-time data feeds.

One of the main capabilities of the platform is to publish streams of data or records, like message
queue; moreover, it is able to store streams of records in a fault-tolerant way, thus making it a good
candidate for security applications in the financial sector. The streams of records can be processed as
well. Generally, Kafka is used to build real-time applications or real-time data pipelines between
applications.

From a hardware point of view, Kafka runs on a cluster of servers, managing records composed by a
key, a value, and a timestamp. The platform adopts 4 different typologies of APIs, allowing the
applications to interact with it: the Producer API (used to publish streams of records), the Consumer
API (to process them), the Streams API (to transform input streams of records into output records)
and the Connector API (to connect Kafka platform to existing applications or data systems, such as
Databases).

Clients for Kafka are available in many different languages.

Project Number: 786727 - FINSEC D5.1 Report on Integrated Big Data Infrastructure - I

FINSEC | State of the Art 18

Table 2: comparison between BigData management technologies

Name Hadoop Storm H2O Spark Kafka

Description Set of tools for
management of
computer
networks for
processing large
amounts of
data.Highly
scalable.

Distributed BigData
processing system
in real time; open
source and user
friendly, flexible,
supports any
programming
language.

Open source platform
for financial services
and insurance
companies to deploy
AI to solve complex
problems.

Map-reduce technology

speeding up the process if

compared with the other ones.

Compatible with many

different environments.

Open-source
stream-processing
software platform
to handle real-time
data streams.

Relevance Relevant to FINSEC
because of its fault
tolerance
(distributed
environment).
It is compatible
with all the
platforms.

FINSEC needs to
manage huge
amounts of data in
a robust manner,
with analytics and
machine learning
functionalities. The
fault-tolerant
features of Storm
make it fully
relevant for a
security
application.

Specific for financial
services and insurance
companies.
Interfaces available
with many different
environments and a
web interface.
Includes different
machine learning
algorithms.

Creation of micro-batches of

data starting from a data

stream.

Includes a machine learning

library.

Fault tolerance in case a node

fails.

Compatible with many

different environments.

Key-Value based
records.
Relevant to FINSEC
because of its fault
tolerance
(distributed
environment).
Compatible with

many different

environments.

Support BigData storage
(distributed file
system, HDFS);
BigData processing
(Data Collector,
YARN);

In FINSEC dataflow,
it is relevant for
BigData processing
(Data Collector),
analytics and AI.

In FINSEC dataflow, it
is relevant for BigData
processing (Data
Collector), analytics
and AI, Predictive
Security.

Data Collector: probes giving

input data as a stream that

needs to be processed as a

batch once stored in the Data

Tier. Analytics and AI.

Data Collector:

probes giving input

data as a stream

that needs to be

processed

Roadmap

To be evaluated and integrated in future releases of FINSEC BIG DATA INFRASTRUCTURE depending on specific technical
requirements from other tools

Project Number: 786727 - FINSEC D5.1 Report on Integrated Big Data Infrastructure - I

FINSEC | Analysis and Mapping of Requirements for Big Data Infrastructure 19

3. Analysis and Mapping of Requirements for Big Data Infrastructure

3.1. Mapping of requirements from FINSEC Reference Architecture

The FINSEC Reference Architecture (RA) has been designed and detailed in Deliverable 2.4 which
represents one of the main input source to define the functionalities, the structure and the
technological solutions for the Big Data Infrastructure.

The high-level architecture describes the logical view of the FINSEC Platform to support processes. It
presents the different components required to manage the transformation and harmonisation of the
valuable datasets from the respective data sources, to their semantic annotation and the metadata
generation, to their exploration with dynamic queries and view creation on top of them. Furthermore
it offers advanced analytics including state of the art big data focused algorithm execution and
sophisticated processing, complemented by advanced visualizations of the analysis results.

Additionally, the FINSEC Reference Architecture outlines all the key features of the logical view for
FINSEC platform. In order to have a clearer overview of the drivers for Big Data Infrastructure from
the RA, the logical view is depicted in the following diagram.

Figure 3: FINSEC Data Tier Architecture

The design of the FINSEC BIG DATA INFRASTRUCTURE was driven by the results of the thorough

analysis of all the technical requirements that was conducted with the aim of addressing the goals and

the expectations of the FINSEC BIG DATA INFRASTRUCTURE stakeholders. Moreover, the design of the

FINSEC BIG DATA INFRASTRUCTURE high-level architecture facilitated the realisation of the designed

workflows that enable the data-driven innovation in the FinTech domain as envisioned by the

consortium.

A key concept in the FINSEC project is the definition of a consistent Data Model outlined in Deliverable
D2.3 and following in internal documents. See APPENDIX (REF FINSEC Reference Data Model).

The whole FINSEC Platform can be conceived as an “intelligent engine” capable of transforming
observed data from the physical and digital world (physical-cyber infrastructure) into Threat
Intelligence. The information produced will be referred to as Cyber and Physical Threat Intelligence
(CPTI). In the same way that Cyber Threat Intelligence (CTI) is valuable information exchanged in the
Cyber Security Domain, the CPTI produced in the FinTech sector is the added-value information

Project Number: 786727 - FINSEC D5.1 Report on Integrated Big Data Infrastructure - I

FINSEC | Analysis and Mapping of Requirements for Big Data Infrastructure 20

produced by the platform which could be exchanged (in-out) between Financial Organizations and
Security Organizations (CERT/CSIRT like).

The FINSEC Platform can be considered a transformer of information that, at any step, correlates and
aggregates more information along the way (from the data collection to presentation) using observed
data and other information gathered from the asset model, the knowledge base using the machine
learning analytics and prediction algorithms.

A consistent Data Model is used to represent this information transformation. The FINSEC approach
is based on existing standards suited to describe events and threats in either the Physical or the Cyber
domain and to extend with the missing part. The FINSEC Data Model is built on objects that can be
described with sequences of key-values in an endlessly extensible way.

A consequence is that the data determine and shape the architecture as much as the functionality.
The key-values maps naturally into a JSON representation and the JSON representation fits seamlessly
into a NoSQL database technology.

Therefore the technology solutions derive from the requirements, the functional specifications and
the mapping on the Reference Architecture into the following schema:

Table 3: Mapping of FINSEC requirements from RA

Requirement Functional Specifications Mapping in Reference
Architecture

Technology solutions provided
by Big Data Infrastructure

Ingestion of Physical & Logical
Incidents

Import of Data from Physical
and Logical Edge/Probes

Data Collector into Security
Database

NoSQL DB (MongoDB) and
Distributed File System

Knowledge Base and
Infrastructure Asset

Import from external KB
and Asset Modeling

Knowledge Base import
Risk Assessment Engine

NoSQL DB (MongoDB) and
Distributed File System

Incident and Threat Detection

Real time Analytics Security Services and Tools NoSQL DB (MongoDB) and
Distributed File System

Predictive Security Machine learning on Big Data Predictive Analytics Query Engine (Elasticsearch)
 and Distributed File System

Presentation Present Data and Threats as
user interface

Dashboard Custom GUI (KIBANA on top
Elasticsearch)

Collaboration Export of Physical Logical
Threat Intelligence

Collaboration Tool Query Engine (Elasticsearch)

Project Number: 786727 - FINSEC D5.1 Report on Integrated Big Data Infrastructure - I

FINSEC | FINSEC BIG DATA INFRASTRUCTURE 21

4. FINSEC BIG DATA INFRASTRUCTURE
The following section will introduce the specific solutions for the FINSEC BIG DATA INFRASTRUCTURE,
a service-oriented application implementing the concept of Data As A Service (DaaS), to provide
support to other applications/microservices internal and external to the FINSEC Platform. The FINSEC
BIG DATA INFRASTRUCTURE will be based on a set of technologies that meet the business and
functional requirements of the project stated in the requirements tasks and analyzed before in the
document. To this end, the FINSEC BIG DATA INFRASTRUCTURE supports a data-driven flow from data
entry to visualization. The envisioned “core service stack” is depicted in Figure 4, which captures the
key features of the FINSEC BIG DATA INFRASTRUCTURE.

The FINSEC BIG DATA INFRASTRUCTURE is an efficient and optimised infrastructure management,
including all aspects of management for the computing, storage and networking resources, as
described before.

The FINSEC BIG DATA INFRASTRUCTURE exploits the underlying core service of Data-driven
Infrastructure Management System, to provide a service core for Data as a Service (see figure) in a
performant, efficient and scalable way. Data as a Service will incorporate a set of technologies
addressing the complete data path: modelling and representation, cleaning, aggregation, and data
processing (including seamless analytics, real-time and process mining). Distributed storage will be
realised through a layer enabling data to be fragmented/stored according to different access patterns
and allowing the efficient expression of that data for database storage and subsequent retrieval.
Advanced modelling will be provided to enable the definition of flexible schemas for both data. These
schemas will be then utilised by the introduced seamless data analytics framework, which analyses
data in a holistic way across multiple data stores and locations, and operates on data irrespective of
where and when it arrives at the platform. A cross-stream analytic engine will be provided that can be
executed in distributed environments. The engine will consider the latencies across data centres, the
locality of data sources and data sinks, and produce a partitioned topology that will maximise the
performance.

Figure 4: Core Services

The core service for Data Ingestion aims at openness and extensibility. The service will allow the
ingestion of data objects and the definition of analytics, providing at the same time “hints” towards
the infrastructure/cluster management system for the optimised management of these analytics tasks.

Data

Analytics

Data-driven Infrastructure Management

Data as a Service

Data

Ingestion

Data
Prediction

Data

Presentation

Project Number: 786727 - FINSEC D5.1 Report on Integrated Big Data Infrastructure - I

FINSEC | FINSEC BIG DATA INFRASTRUCTURE 22

Furthermore, the service will allow probes and analytics engines to specify requirements and
preferences both for the infrastructure management (e.g. application requirements) and for the data
management (e.g. data quality goals, incremental analytics, information aggregation “levels”, etc.).

The core service for Data Analytics service will provide a framework allowing for flexible modelling of
process analytics to enable their execution. Functionality-based process modelling will then be
concretised to technical-level process mining analytics, while a feedback loop will be implemented
towards overall process optimisation and adaptation.

The core service for Data Prediction aims at enabling the applications of predicting algorithms with
the required data services, their interdependencies with the application micro-services and the
necessary underlying resources.

Finally, the core service for Data Presentation, going beyond the visualization of data and analytics,
outcomes to adaptable visualisations in an automated way, according to application analysis and data
semantics. Visualizations will cover a wide range of aspects (interlinked if required) besides data
analytics, such as computing, storage and networking infrastructure data, data sources information,
and data operations outcomes (e.g. cleaning outcomes, aggregation outcomes, etc.). Moreover, the
FINSEC BIG DATA INFRASTRUCTURE visualisations will be incremental, thus providing data analytics
results as they are produced.

4.1. Operation of the FINSEC BIG DATA INFRASTRUCTURE

The envisioned operation of FINSEC BIG DATA INFRASTRUCTURE is reflected in five main phases as
depicted in Figure 5 (and further detailed in the following sub-sections): Entry, Modelling, Analytics
and Prediction and Presentation.

Figure 5: Phases for BigData infrastructure

Entry

Modeling

Analytics Prediction

Presentation

Big Data
Infrastructure

Project Number: 786727 - FINSEC D5.1 Report on Integrated Big Data Infrastructure - I

FINSEC | FINSEC BIG DATA INFRASTRUCTURE 23

4.1.1. Entry Phase

During the entry phase, PROBES ingest their data through a DATA COLLECTOR.
Thus, the Entry Phase consists of three discrete steps:

● Probes ingest their data in the FINSEC BIG DATA INFRASTRUCTURE-supported data stores
through a unified API. They can directly choose if they want to store (non-) relational data or
use the FINSEC BIG DATA INFRASTRUCTURE’s object storage services. Moreover, historical
data can periodically move from the operational database to object storage, keeping only
recent data on the database and providing a backup mechanism. Streaming data can also be
processed, leveraging the FINSEC BIG DATA INFRASTRUCTURE implementation.

● Given the stored data, Analytics can design processes utilising the intuitive graphical user
interface provided by the Process Modelling framework, and the available list of “generic”
processes (e.g. customer segmentation process). Overall they compile a business workflow,
ready to be mapped to concrete tasks that will be executed. This mapping is performed by a
mechanism incorporated in the Process Modelling framework, which is called Process
Mapping.

● Based on the outcomes of process, the data services (which constitute the corresponding
business workflow) are made available to the analytics through the API. The analytics modules
can specify preferences for specific data, for example, how a data service should treat missing
values or ingest a complete algorithm in the case this has not been mapped (and as a result
made available) by the Process Mapping mechanism.

● The output of the Entry Phase is a set of documents (that includes all relevant information for
the application graph with concrete “executable” services) that is passed to the analytics
engine in order to identify the resource needs for the services and as a result for the overall
application.

4.1.2. Modelling Phase

During the modelling phase, Risk Assessment Engines create their models and stores them into the
FINSEC BIG DATA INFRASTRUCTURE. The business processes and the assets will be design by utilising
the functionalities of the Process Modelling framework in order to describe the overall business
workflows, while analytics can specify their preferences and pose their constraints through the Data
service interface.

4.1.3. Analytics Phase

The analytic phase of FINSEC BIG DATA INFRASTRUCTURE aims at optimizing the provision of data
services and data-intensive applications by understanding not only their data-related requirements
(e.g. related data sources, storage needs, etc.) but also the data services requirements across the data
path (e.g. the resources needed for effective data representation, aggregation, etc.) and the
interdependencies between application components and data services (both included as processes
through the process modelling approach described in the previous paragraph). In this context,
dimensioning includes a two-step approach that is realised through the FINSEC BIG DATA
INFRASTRUCTURE:

● In the first step, the input from the Data Collection is used to support the composite
application (consisting of a set of micro-services) needs with relation to the required data
services.

● The second step is to support these identified/required data services, as well as all the
application components, regarding their infrastructure resource needs.

Project Number: 786727 - FINSEC D5.1 Report on Integrated Big Data Infrastructure - I

FINSEC | FINSEC BIG DATA INFRASTRUCTURE 24

4.1.4. Prediction Phase

The prediction of FINSEC BIG DATA INFRASTRUCTURE aims at orchestrating the optimum deployment
patterns and practices for both data services and applications. The need for such optimisation
emerges from the fact that all services to be deployed have interdependencies that need to be
considered, to obtain a practical deployment, as well as to account for the user’s preferences (e.g.
minimisation of cost).

To this end, the deployment approach of FINSEC BIG DATA INFRASTRUCTURE includes a two-step
phase and is realised through the mechanism of the FINSEC BIG DATA INFRASTRUCTURE management
system:

● Deployment receives the dimensioning information for components and decides on the
overall optimum deployment pattern through a ranking mechanism.

● Following the identification and analysis of the interrelations and the impact of the
components, in terms of computation, storage and networking resources (considering data
characteristics such as volumes, application components and data services I/O rates, legal
constraints, etc.), optimum deployment patterns will be compiled.

4.1.5. Presentation Phase

The presentation service of FINSEC BIG DATA INFRASTRUCTURE is realised through different
components (Dashboard, Collaboration Modules) and aims at the visualization and transport of the
complete data resources, in an optimised way for data-intensive applications.

4.2. FINSEC Big Data Infrastructure Architecture

According to D2.4, the Data Tier is the logical layer where information are stored and is organized into
different storage infrastructures, providing consisting data access API to all other modules. Quoting
D2.4

The Data Tier provides an infrastructure to serve data that follow in the FINSEC REFERENCE
DATA MODEL (defined by the project in tasks T2.3 and T2.4). It provides access in read/write
via a Data Access API, exposed by an ad-hoc service of the platform (Data Manager). This
module exposes convenient data access and manipulation functions to clients, is responsible
for ensuring validation of input data against the data model and abstracts away the actual
underlying DB engine(s), which can be changed without affecting upper-level services.

As depicted in the Figure 3, the FINSEC BIG DATA INFRASTRUCTURE will provide a complete
infrastructure big data management system accomplished by a seamless and consistent API
interface.

The Data Tier will be used as a service from other applications both external and internal to the FINSEC
Platform, outlined in D2.3. In this respect it should be considered as a Security Data as a Service and
could also be a general module used in other contest. Therefore it is designed with generality by
design.

Conceptually, data flows into the data tier from the external world, coming from probes and other
applications/microservices (e.g. the import module of a compatible Knowledge Base of Cyber Threat
Information). These modules produces Security Data that will be consumed from other modules in the
platform, for further elaboration. However the complex nature of the data, the potentially large
quantities to be stored and the need to process the data for analytics, predictions and visualization

Project Number: 786727 - FINSEC D5.1 Report on Integrated Big Data Infrastructure - I

FINSEC | FINSEC BIG DATA INFRASTRUCTURE 25

requires into the data tier the presence of a specialized search engine that scales on a big data
infrastructure.

The FINSEC BIG DATA INFRASTRUCTURE is designed, in the following, as a modular architecture
composed of multiple key components, where each component was designed with a clear business
context, scope and set of functionalities. As the project matured after the initial version of the high-
level architecture, additional functionalities were designed and introduced in the platform. Moreover,
as a result of the comprehensive analysis of the feedback received by the end-users of the platform
from the released versions of the platform, a series of adjustments and refinements were introduced
in the components of the platform in order to better address the identified requirements, but also to
facilitate the implementation of the functionalities of the platform.

The following picture depicts the illustrated scenario.

Figure 6: FINSEC BigData Architecture

The depicted FINSEC BIG DATA INFRASTRUCTURE high-level architecture, incorporates all the

adjustments and refinements that were introduced in the course of development of the FINSEC BIG

DATA INFRASTRUCTURE platform. This architecture will drive the implementation and the release of

the FINSEC BIG DATA INFRASTRUCTURE Minimal Viable Platform (MVP).

In the MVP, all probes will feed the Data Collector which in turn will use the ingestion/create methods

of the FINSEC BIG DATA INFRASTRUCTURE Security Database.

4.3. Building Block Structure and Functionalities

4.3.1. Security Database (MONGODB)

The FINSEC BIG DATA INFRASTRUCTURE provides a NoSQL database to store data coming from the
field via the probes and Data Collector. The actual choice according to the analysis presented in the
previous sections is to use a NoSQL database such as MongoDB.

Project Number: 786727 - FINSEC D5.1 Report on Integrated Big Data Infrastructure - I

FINSEC | FINSEC BIG DATA INFRASTRUCTURE 26

Moreover MongoDB also offers GridFS specification for storing and retrieving large files that exceed
the BSON-document size limit of 16MB.

In MongoDB, databases hold collections of documents. Data is stored in these documents in a binary
representation known as Binary JSON (BSON). Every document has a unique key, “id”, in a collection.
Collections in MongoDB have Dynamic schemas. Thus, a different “shapes” of documents can be
stored within a single collection.

GridFS stores large binary files by dividing the files into smaller files called “chunks” and saving each
of them as a separate document. GridFS limits a default chunk size to 255 kB, thus enabling efficient
file handling operations regardless of the file size.

As shown in the Figure 7, GridFS uses two collections to save a file to a database: fs.chunks and fs.files .
The first one contains the binary file divided into 255kB chunks while the other collection contains the
metadata for the document.

Figure 7: GridFS structure

There are several reasons that might lead an organization to the decision of storing the binary data
in the same system as the metadata instead of storing it in a separate repository. These include:

● The resulting application will have a simpler architecture: one system for all types of data;
● Document metadata can be expressed using the rich flexible document structure, and

documents can be retrieved using all the flexibility of MongoDB’s query language;
● MongoDB’s high availability (replica sets) and scalability (sharding) infrastructure can be

leveraged for binary data as well as the structured data;
● One consistent security model for authenticating and authorizing access to the metadata

and files;
● GridFS doesn’t have the limitations of some file systems, like number of documents per

Project Number: 786727 - FINSEC D5.1 Report on Integrated Big Data Infrastructure - I

FINSEC | FINSEC BIG DATA INFRASTRUCTURE 27

directory, or file naming rules.

Using MongoDB GridFS as a solution for handling unstructured data is a better option because data
is stored inside the database, which is highly scalable and designed for horizontal partitioning.
Another reason in favor of using MongoDB GridFS as a solution to this problem is that horizontal
partitioning combined with replication capabilities enables use of simultaneous reading of data from
several database servers that serve as replication servers. The simultaneous reading capability
greatly increases throughput performance of the system.

4.3.2. Security DB API

The Security DB of the FINSEC BIG DATA INFRASTRUCTURE will supports four basic operations, Create,
Read, Update and Delete (CRUD). These operations can be used for inserting and retrieving data
formatted according to the FINSEC Data Model (FINSTIX see appendix).
The Security DB will be implemented in MongoDB and the rest of example will use the API Compass.
The rest of this section, presents an overview on these operations.

1) Create Operation
In FINSEC BIG DATA INFRASTRUCTURE will, insert operations target a single collection. All write
operations are atomic on the level of a single document.

FINSEC BIG DATA INFRASTRUCTURE will provide two methods to insert a document into a collection:

db.finstix.insertOne() # Inserts one document

db.finstix.insertMany() # Inserts multiple documents

Example:
db.finstix.insertOne(// Collection

{ // FINSTIX Document

 "type": "x-finstix",

 "id": "x-finstix--998fcca5-06c7-4c5d-98d7-3c966599fc94",

 "created": "2019-02-06T18:13:36.140Z",

 "modified": "2019-02-06T18:13:36.140Z",

 "subtype": "Physical",

 "description": "Attack to Person",

 "parameter": "Confidentiality 50%",

 "narrative": "attack with knife and gun",

 "priority": "7",

 "organization": "Wirecard",

 "asset": "ATM #6789",

 "position": "45.490946+9.228516",

 "probe": "FUJITSU CCTV"

}

)

2) Read Operation
Read operations retrieve documents from collections.

To query a collection for documents, FINSEC BIG DATA INFRASTRUCTURE will provide basic methods
to query/find an object into a collection:

db.finstix.find(query, projection)

Where query specifies the criteria of the documents to return, and projection specifies the fields to
return in the documents that match the query criteria.

Project Number: 786727 - FINSEC D5.1 Report on Integrated Big Data Infrastructure - I

FINSEC | FINSEC BIG DATA INFRASTRUCTURE 28

Example:
db.finstix.find(// find finstix object in Collection

{created: $gt: 2018-01-01}, // query criteria

 asset: ,

 address: 1}

).limit(5)

The query uses $gt to return,events created after a certain date and uses the method limit(5) to set
the maximum number of returned documents to 5.

3) Update Operation
Update operations modify existing documents in a collection. FINSEC BIG DATA INFRASTRUCTURE will
provides the following methods to update documents of a collection:

db.finstix.updateOne() # Modifies one document

db.finstix.updateMany() # Modifies multiple documents

db.finstix.replaceOne() # Replaces one document

4) Delete Operation

Delete operations remove documents from a collection. FINSEC BIG DATA INFRASTRUCTURE will
provides the following methods to delete documents of a collection :

db.finstix.deleteOne() Deletes one document

db.finstix.deleteMany() Deletes multiple documents

Scalable Infrastructure

In order to meet the needs of applications with large data sets and high throughput requirements, the
FINSEC BIG DATA INFRASTRUCTURE implemented with MongoDB, provides horizontal scale-out for
databases using a technique called sharding. Sharding allows MongoDB deployments to scale beyond
the limitations of a single server and it does this without adding complexity to the application. It
automatically divides and distributes data across multiple servers or shards. Each shard is backed by a
replica set to provide always-on availability and workload isolation. To respond to workload demand,
nodes can be added or removed from the cluster in real time, and MongoDB will automatically
rebalance the data accordingly, without manual intervention. MongoDB supports sharding through
the configuration of a sharded cluster, which is composed of three major components: Shards, Query
routers and Configuration servers.

Project Number: 786727 - FINSEC D5.1 Report on Integrated Big Data Infrastructure - I

FINSEC | FINSEC BIG DATA INFRASTRUCTURE 29

Figure 8: Automatic sharding for horizontal scale-out

In the sharded cluster, each shard contains a subset of the sharded data and can be deployed as a
replica set. The query router directs requests from the application to the appropriate shard and also
returns the result back to the client. These are “mongos” instances and there can be more than one
in a cluster. Multiple mongos instances reduce the request load from client. The third component in
a sharded cluster is the configuration servers. They have metadata about all the shards and hence,
help the query router to direct different operations to specific shards. Figure 9 shows an overview of
a sharded cluster in MongoDB.

Figure 9: A sharded cluster in MongoDB

Sharding in MongoDB is on collection level. Data of a collection is partitioned by a shard key. Shard
keys are indexed fields existing in every document in the collection. Shard key values are divided into
groups, also known as chunks and distributed evenly across the shards. MongoDB offers multiple
sharding policies that enable developers and administrators to distribute data across a cluster
according to query patterns or data locality. As a result, MongoDB delivers much higher scalability
across a diverse set of workloads:

▪ Ranged Sharding. Documents are partitioned across shards according to the shard key value.

Project Number: 786727 - FINSEC D5.1 Report on Integrated Big Data Infrastructure - I

FINSEC | FINSEC BIG DATA INFRASTRUCTURE 30

Documents with shard key values close to one another are likely to be co-located on the
same shard. This approach is well suited for applications that need to optimize range based

queries, such as co-locating data for all customers in a specific region on a specific shard.  

▪ Hashed Sharding. Documents are distributed according to an MD5 hash of the shard key
value. This approach guarantees a uniform distribution of writes across shards, which is

often optimal for ingesting streams of time-series and event data.  

▪ Zoned Sharding. allows precise control over where data is physically stored in a cluster. This
allows developers to accommodate a range of application needs. For instance, controlling
data placement by geographic region for latency and governance requirements, or by

hardware configuration and application feature to meet a specific class of service.  

4.3.3. ANALYTICS SEARCH ENGINE

The FINSEC BIG DATA INFRASTRUCTURE provides an analytic search engine to work on stored data
coming from probes and the Security Database. The actual choice according to the analysis presented
in the previous sections is Elasticsearch. Thus, Elasticsearch complements the NoSQL database
(MongoDB) as a search engine to allow scalable and near real-time search on the data. The advantages
of such a solution is the ability to reliably store documents and perform simple full-text search queries
in MongoDB along with the extensive functionalities, customizability and speed for performing
complex full-text search queries in Elasticsearch.

Elasticsearch was initially developed as a system for full text search in large volumes of unstructured
data. At present, Elasticsearch is a full-fledged analytical system with various capabilities. Its main
strengths are exceptional and reliable speed, very high customizability and outstanding flexibility.

In order to accomplish sophisticated searches, Elasticsearch provides the two key features Query and
Filter. There exist multiple types of queries, the most important being Full-text, Term, Match, and
Prefix. The Geo filter is also one of most important features of Elasticsearch. Since Elasticsearch is built
on top of Lucene, Elasticsearch makes use of all features provided by Lucene and extends them by
providing additional features. The Query Domain Specific Language (Query DSL) can be used in order
to support the creation of advanced queries of Elasticsearch. Elasticsearch uses the Inverted index
structure for allowing fast full-text searches.

The search in Elasticsearch is near real-time. This means that although documents are indexed
immediately after they are successfully added to an index, they do not appear in the search results
until the index is refreshed. Elasticsearch does not refresh the indices after each update. Instead it
makes the use of a specified time interval, also called refresh interval, to perform this operation. By
default, the refresh interval is one second. Since refreshing is costly in terms of disk I/O, it can affect
the indexing performance. For that reason, increasing the refresh interval before updating a large
number of documents is useful. Elasticsearch provides a Search API supports GET and POST methods
and enables to search across multiple indices. However, more complex searches can be accomplished
by using the Query DSL which allows for using Queries and Filters.

In the context of data analysis, Elasticsearch is used together with other components such as Logstash
and Kibana, and plays the role of data indexing and storage.

Scalability of the search Engine:

Project Number: 786727 - FINSEC D5.1 Report on Integrated Big Data Infrastructure - I

FINSEC | FINSEC BIG DATA INFRASTRUCTURE 31

As Elasticsearch has a distributed architecture it enables to scale up to thousands of servers and
accommodate petabytes of data. It provides the ability to subdivide the index into multiple pieces
called shards, and its structure is optimized for fast and efficient full-text searching. Shards come in
two types, master and replica. The master shard allows both read and write operations, while the
replica is read only, and is an exact copy of the master. Such a structure ensures the stability of the
system, since in the event of a master failure, the replica becomes a master.

The advantage of sharding feature is that it allows horizontal scaling of the content volume and
improves the performance of Elasticsearch by providing parallel operations across various shards that
are distributed on nodes. Each primary and replica shard is built of multiple segments. Elasticsearch
makes the use of segment merging for reducing the number of segments in order to allow faster
searching and for reducing the size of the index because of removing deleted documents when the
merge is finalized. Figure 10 illustrates an example of an Elasticsearch cluster. The cluster consists of
two nodes with four primary shards and four replica shards. As shown in the figure, replica shards
reside on different nodes than the primary shards in order to help in case of primary shard failure and
for reasons of load balancing of incoming requests (i.e., Replica shard 1, which belongs to the Primary
shard 1, resides on Node 2, whereas the primary resides on Node 1).

Figure 10: Example of an Elasticsearch cluster

4.3.4. Synchronization with Mongodb

There are different ways to synchronize data from MongoDB to Elasticsearch (e.g., Logstash,
Mongoosastic, Transporter, Monstache, etc) but one easy option is to use Mongo-Connector.

Mongo-Connector is a generic connection system that can be used for connecting MongoDB to search
engines such as Solr or Elasticsearch for more advanced search. It copies the documents stored in
MongoDB to the target system. Afterwards, it constantly performs updates on the target system to
keep MongoDB and the target synchronized. The connector supports both Sharded Clusters and
standalone Replica Sets, hiding the internal complexities such as rollbacks and chunk migrations.

Figure 11 illustrates how data can be synchronized using mongo-connector, which requires mongoDB
to run in replica-set mode. It synchronizes data in mongoDB to the target then tails the mongoDB
oplog, keeping up with operations in mongoDB in real-time. A package named
“elastic2_doc_manager” is also required in order to write data to Elasticsearch.

From version 2.0, mongo-connector can also replicate files stored in GridFS to Elasticsearch using the
attachment mapping type.

Project Number: 786727 - FINSEC D5.1 Report on Integrated Big Data Infrastructure - I

FINSEC | FINSEC BIG DATA INFRASTRUCTURE 32

Figure 11: data synchronization through mongo-connector

4.3.5. ELASTICSEARCH BASIC OPERATIONS

The usage of the RESTful API is quite simple: it expects JSON encoded parameters, and can be accessed
using HTTP. The returned results are also encoded in JSON. The RESTful API supports requests in order
to manage the index, check the server health, update the node, search data, and manage the cluster.
Since REST is built upon HTTP protocol, it supports all methods of HTTP like GET, PUT, POST, DELETE,
and so on. By default, Elasticsearch does not provide any authentication or authorization method to
its REST API. However, the chargeable Elasticsearch plugin Shield provides functionalities for
encrypting communications and a role-based access control. The REST API provides the speeding up
of atomic operations with the Bulk API. It allows to make multiple create, read, update, and delete
requests of documents at once. The rest of this section, presents an overview on basic CRUD APIs.

 Index API

The index API adds or updates a typed JSON document in a specific index, making it searchable. The
following example inserts the JSON document into the "finstix" index, under a type called " x-finstix "
with an id of "x-finstix—998fcca5-06c7-4c5d-98d7-3c966599fc94" :

PUT finstix/x-finstix/x-finstix—998fcca5-06c7-4c5d-98d7-3c966599fc94

{ "created": "2019-02-06T18:13:36.140Z",

 "modified": "2019-02-06T18:13:36.140Z",

 "subtype": "Physical",

 "description": "Attack to Person",

 "parameter": "Confidentiality 50%",

 "narrative": "attack with knife and gun",

 "priority": "7",

 "organization": "Wirecard",

 "asset": "ATM #6789",

 "position": "45.490946+9.228516",

 "probe": "FUJITSU CCTV"

}

Get API

The get API allows to get a typed JSON document from the index based on its id. The following example
gets a JSON document from an index called finstix, under a type called x-finstix, with id valued x-
finstix—998fcca5-06c7-4c5d-98d7-3c966599fc94:

GET finstix/x-finstix/x-finstix—998fcca5-06c7-4c5d-98d7-3c966599fc94

Delete API

The delete API allows to delete a typed JSON document from a specific index based on its id. The
following example deletes the JSON document from an index called finstix, under a type called x-
finstix, with id x-finstix—998fcca5-06c7-4c5d-98d7-3c966599fc94:

Project Number: 786727 - FINSEC D5.1 Report on Integrated Big Data Infrastructure - I

FINSEC | FINSEC BIG DATA INFRASTRUCTURE 33

DELETE /finstix/x-finstix/x-finstix—998fcca5-06c7-4c5d-98d7-3c966599fc94

Update API

The update API allows to update a document based on a script provided. The operation gets the
document from the index, runs the script, and indexes back the result. The following example add a
new field to the document:

POST finstix/x-finstix/x-finstix—998fcca5-06c7-4c5d-98d7-3c966599fc94/_update

{

 "script" : "ctx._source.new_field = 'value_of_new_field'"

}

Queries and Filters

 Elasticsearch provides a REST API and clients for several programming languages that support a
flexible query language named ‘Query DSL’. Although, it is denoted as a ”Query” DSL, it also contains
a ”Filter” DSL. A search can be performed in two ways: in a form of a query or in a form of a filter. The
main difference between them is that a query calculates a relevance score of the returned documents
whereas the filter does not. Due to this, and the fact that filter can be cached, searching via filters is
faster than via queries. A filter asks a yes/no question of every documents, whereas the query also
asks the question: ’How well does this document match?’ In Elasticsearch, there are different types of
queries, like basic queries, compound queries, full-text search queries, and pattern queries, to name
a few. Basic queries allow for searching for a part of the index. Furthermore, they allow for nesting
other queries inside the basic query. Compound queries allow combining multiple queries or filters
inside them. Full-text search queries support full-text searching, analyzing their content and providing
Lucene query syntax. Last but not least, pattern queries support various wildcards in queries. Basic
queries include e.g., term, match, and indices queries. The match query can be also categorized to the
group of full-text search queries. This also applies to the prefix query that can be included to the group
of pattern queries.

Below is an example of query clauses being used in query and filter context in the search API. This
query will match documents where all of the following conditions are met:

The description field contains the word attack.

The narrative field contains the word gun.

The subtype field contains the exact word Physical.

The created field contains a date from 06 Feb 2019 onwards.

GET /_search

{

 "query": {

 "bool": {

 "must": [

 { "match": { "description": "attack" }},

 { "match": { "narrative": "gun" }}

],

 "filter": [

Project Number: 786727 - FINSEC D5.1 Report on Integrated Big Data Infrastructure - I

FINSEC | FINSEC BIG DATA INFRASTRUCTURE 34

 { "term": { "subtype": "Physical" }},

 { "range": { "created": { "gte": "2019-02-06" }}}

]

 }

 }

}

Project Number: 786727 - FINSEC D5.1 Report on Integrated Big Data Infrastructure - I

FINSEC | FINSEC BIG DATA INFRASTRUCTURE 35

4.5. FINSEC BIG DATA INFRASTRUCTURE TECHNICAL INTERFACE

As an example, the following table give the technical specification of the RestAPI interface to the Entry
module into the FINSEC Big Data INFRASTRUCTURE.

Table 4: Create DB interface

Technical Interface

Reference Code DB01#01

Function Upload the dataset

Subsystems MongoDB- DATABASE

Type, State RESTful-API

Endpoint URI <server url:9009>/ingest/

Input Data FINSTIX JSON format

Output Data 200 OK - NOT OK

Table 5: Create DB interface

Technical Interface

Reference Code DB01#02

Function Upload the dataset

Subsystems MongoDB- DATABASE

Type, State RESTful-API

Endpoint URI <server url:9009>/ingestmulti/

Input Data FINSTIX JSON format

Output Data 200 OK - NOT OK

Table 6: Create DB interface

Technical Interface

Reference Code DB01#03

Function Upload the dataset

Subsystems MongoDB- DATABASE

Type, State RESTful-API

Endpoint URI <server url:9009>/find/

Input Data FINSTIX JSON format

Output Data 200 OK - NOT OK

Project Number: 786727 - FINSEC D5.1 Report on Integrated Big Data Infrastructure - I

FINSEC | Implementation and Integration Aspects 36

5. Implementation and Integration Aspects

5.1. Deployment Infrastructure

FINSEC will support the deployment of the Big Data Infrastructure components as part of the FINSEC
Core, which will be available as a Kubernetes application that can be installed both on-premises and
in the cloud.

Kubernetes is the leading open source container orchestration platform and allows to leverage all the
advantages of a modern container-based solution, including ease of distribution via prepackaged
Docker images, automated deployment of complex systems using manifests and simple horizontal
scalability. Furthermore, using Kubernetes as the deployment platform allows to abstract from the
actual underlying infrastructure, which may be virtual or physical, on-premises or cloud-based. Most
public cloud providers offer managed Kubernetes clusters, including Amazon EKS, Azure AKS, Google
GKE and DigitalOcean Kubernetes. These allow to provision a ready-to-use Kubernetes cluster with no
configuration effort. On-premises Kubernetes solutions include the community-supported open
source version, which can be installed with tools such as kubeadm or Kubespray, and commercially
supported distributions, such as Red Hat OpenShift Container Platform.

Two important requirements for Big Data solutions are scalability and storage. Horizontal scalability is
easy to achieve in a container cluster, since the number of desired instances for each container can
be changed dynamically with API commands or even auto-scaling rules, e.g. based on CPU utilization.
Regarding storage, while early versions of container platforms did not have good support for
persistent storage, recent versions of Kubernetes can use a wide range of storage plugins for
persistent volumes, from traditional Fibre Channel LUNs and iSCSI, to distributed storage such as
GlusterFS and block storage from the main cloud providers. Several NoSQL and Big Data components,
including MongoDB and Elasticsearch, publish official ready-to-use Docker images, which make it easy
to deploy them on a container cluster.

Regarding hosting in the cloud or on-premises, FINSEC will support both scenarios, as shown in Figure
12. The integrated development and testing environment will be hosted on the Digital Ocean public
cloud, leveraging their managed Kubernetes offering. This will allow flexibility in allocating resources
on an as-needed basis and avoid concerns about physical infrastructure provisioning and
management. On the other hand, pilots will have the option to choose between a cloud plus edge
deployment or a fully on-premises deployment. In the first scenario, the FINSEC Core for the pilot will
be deployed in a dedicated environment in the Digital Ocean cloud, with only probes running in the
edge, i.e. the pilot organization data center. This will benefit from fully delegating the deployment of
the FINSEC Core to the FINSEC DevOps tools, thanks to tight integration on the same cloud platform.
In the second scenario, all FINSEC components will be hosted on the pilot organization own
infrastructure. This will still benefit from the automated deployment using Kubernetes manifests, but
it will require setting up a local Kubernetes cluster (if not already available) and possibly tuning the
deployment configuration to adapt to the local infrastructure, such as using proper drivers for
persistent storage.

Project Number: 786727 - FINSEC D5.1 Report on Integrated Big Data Infrastructure - I

FINSEC | Implementation and Integration Aspects 37

Figure 12: Deployment scenarios

5.2. FINSEC technologies to be integrated with the BigData Infrastructure

 The integration includes a seven-step process:

● Based on the deployment phase, outcomes regarding the optimised deployment pattern,
computing resources are reserved and allocated.

● According to the allocated computing resources, storage resources are also reserved and
allocated. It should be noted that storage resources are distributed.

● Data-driven networking functions are compiled and deployed to facilitate the diverse
networking needs between different computing and storage resources.

● The application components and data services are deployed and orchestrated based on
“combined” data and application-aware deployment patterns. An envisioned orchestrator
mechanism will compile the corresponding orchestration rules according to the deployment
patterns and the reserved computing, storage and network resources.

● Data analytics tasks will be distributed across the different data stores to perform the
corresponding analytics, while orchestration of application components and data services is
also performed.

● Monitoring data is collected and evaluated for the resources (computing, storage and
network), application components and data services and functions (e.g. query execution
status).

● Runtime adaptations take place for all elements of the environment including resource re-
allocation, storage and analytics re-distribution, re-compilation of network functions and
deployment patterns.

Project Number: 786727 - FINSEC D5.1 Report on Integrated Big Data Infrastructure - I

FINSEC | Implementation and Integration Aspects 38

5.2.1. Anomaly Detection

Anomaly detection is a family of analytics techniques that learn typical properties of the system and
reports significant deviations from the typical system’s properties as outliers. Anomaly detection is
frequently used in the state-of-the-art Intrusion Detection Systems (IDSs) because it provides a
protection of the system from new zero-day attacks whenever these attacks deviate from typical
behaviors of the system. Another advantage of Anomaly detection techniques is that they don’t
require a balanced training set in which both malicious and benign events are equally represented.
These techniques are a better fit for real industrial system where malicious events are much more rare
than benign events.

There is a wide range of Anomaly Detection techniques including statistical methods, clustering
methods, time series analysis and recent techniques based on deep neural network. In FINSEC we will
deploy a number scalable adaptive Anomaly Detection analytics as a cloud service. The architecture
of Anomaly Detection component is depicted below.

Figure 13: Anomaly Detection component architecture

For scalability we will use an Apache Spark platform which is the most recent state-of-the-art of map-
reduce platform with a rich set of machine learning libraries optimized for Big Data setups. The
development will be python based to allow to leverage and evaluate publicly available state-of-the-
art machine learning techniques as part of in the rich python eco-system. The data will be periodically
read from ElasticSearch or other data sources according to received data triggers and processed both
for training and analysis in Spark. The trained models will be stored in a persistent storage e.g., HDFS.
The output of anomaly detector will be the reports of the detected outliers or adaptive data requests.
The data triggers and output of anomaly detector will be distributed using Kafka protocol.

For adaptivity we will use a number of techniques, including online training techniques. For these
methods the models are adaptively updated for new system inputs. A simple example of such a
technique is the exponential smoothing average which enables continuous updates of mean values
and the corresponding standard deviation values of system features. A more advanced example will
be estimation of conditional density of next observation of a signal given a previous time window
either by directly estimating some signal statistics or by applying LSTM deep learning techniques.

Another example of an adaptive algorithm is an alert budgeting system. An alert budgeting system
aims to adaptively set thresholds above which alerts are generated. Alert budgeting systems will

Project Number: 786727 - FINSEC D5.1 Report on Integrated Big Data Infrastructure - I

FINSEC | Conclusions 39

automatically adapt the thresholds according to the recent system behavior to make sure that in
average the security officer doesn't need to handle more than a predefined amount of alerts. This
method adapts to the nature of the data and has the added benefit of allowing the security officer to
configure an 'easy to grasp' parameter like "The amount of alerts that can be handled by a human
operator during a day" and not an obscure threshold level number.

FINSEC Anomaly detection analytics will be tuned, trained and validated using data provided by FINSEC
partners. Anomaly detection component will report detected outliers along with an anomaly score
and an additional contextual info of the triggered outlier.

6. Conclusions
The present document has provided the report of the activities done so far within Task 5.1 on the
definition and design of FINSEC BIG DATA INFRASTRUCTURE. An overview of the technological state
of the art was given at the beginning of the deliverable, with the comparison between NoSQL and
NewSQL solutions. According to the need of scalability, a NoSQl solution is identified as the best one.
MongoDB is the most suitable technology among the analysed ones, and it will be supported by
analytics engine Elasticsearch, supporting queries for data search within the database on JSON-based
data, as foreseen by the proposed FINSTIX data model.

The BigData infrastructure is thought in a Data as a Service perspective, where a set of technologies
are integrated together to address the complete data path: modelling and representation, cleaning,
aggregation, and data processing, and then the operation of FINSEC BIG DATA INFRASTRUCTURE is
reflected in four main phases, namely Entry, Modeling, Analytics and Prediction and Presentation.

The infrastructure is a modular architecture, whose deployment and integration will be based on the
Kubernetes technology, which is able to support storage functionalities as well.

The following activities within Task 5.1 will be focused on the consolidation of the proposed design
and on the implementation, integration and deployment of the FINSEC BIG DATA INFRASTRUCTURE.
Deliverable 5.2 (to be submitted in M18) will represent the final report for this task on the results of
the infrastructure implementation.

The research leading to these results has received funding from the European Union’s Horizon 2020 Research and Innovation Programme, under grant
agreement no 700071.

Horizon 2020 Programme

Instrument: Innovation Action

ANNEX A - FINSTIX Data Model

FINSTIX BASIC CONCEPTS

1. The FINSEC Data Model is an extension of STIX2
2. It will be called FINSTIX
3. FINSTIX extends STIX2 into the physical and logical domain
4. FINSTIX Data Model basic object is a sequence of key-values that can be passed as JSON
5. FINSTIX Data Model general object is an aggregate of more objects and relations still expressed in JSON
6. FINSTIX will be also specific including information relevant to the financial sector
7. FINSTIX defines other objects and relations to STIX2 to cope with the correlation of physical and logical data
8. Probes generate Observed Data, Events, Incidents, Logs (observed data) according to the FINSTIX Data Model
9. Data Collectors (DC) have the function to gather data from probes normalizing, sanitizing, prioritizing and storing CPTI into the Data Layer. In other

words, a DC knows the syntax-semantic and add or subtract further information to the FINSTIX objects passing through.
10. FINSTIX objects coming from Data Collector are stored into the DATA LAYER of the FINSEC platform.
11. Asset Model (AM) and Knowledge Base (KB) are represented with FINSTIX objects as well.
12. The Analytics/Predictive algorithms use events, observed data, the Knowledge base and Asset Models to produce Cyber Physical Threat Intelligence

(CPTI vs CTI).

Table 7: FINSTIX objects

Source Type Description with difference with STIX Key-Value (JSON like)

ALL GENERIC The generic object.

All objects MUST have the basic properties described on the
right.

{
 "type": "object type",
"id": "typexxx--8e2e2d2b-17d4-4cbf-938f-98ee46b3cd3f",
 "created": "e.g. 2019-02-06T20:03:00.000Z",
 "modified": "e.g 2019-02-08T18:13:36.140Z",
 "subtype": "Physical or Logical or both",
 "name": "name of object",
 "description": "short description"
 "parameter": "",

Project Number: 786727 - FINSEC D5.1 Report on Integrated Big Data Infrastructure - I

FINSEC | FINSTIX BASIC CONCEPTS 41

 "narrative": "long description ",
 "priority": "1-10",
 "organization": "Company name",
 "asset": "asset name",
 "position": "polar coordinates",
 "probe": "Probe name"
}

PROBE Observed Data Conveys information observed on infrastructure both logical
and physical assets.

Typically used to contain:

● Log
● Events
● Incidents

for both logical and physical assets.

In FINSTIX, and in our specific case and situation, one can
manipulate and modify the three attributes “first_observed”,
“last_observed” and “number_observed” to enlarge the
collected data volume when necessary allowing more accuracy
when processing the data.

{
 "type": "object type",
 "id": "typexxx--uuid",
 "created": "2018-04-06T20:03:00.000Z",
 "modified": "2019-02-06T18:13:36.140Z",
 "subtype": "Physical or Logical or both",
 "name": "Probe name",
 "description": "Lorem Ipsum"
 "parameter": "",
 "narrative": "attack with knife and gun",
 "priority": "7",
 "organization": "organization--uuid",
 "asset": "asset--uuid",
 "position": "45.490946+9.228516",
 "probe": "FUJITSU CCTV"
 “first_observed”: “1”,
 “last_observed”: “2”,
 “number_observed” : “123”,
}

PROBE Probe A new object to describe probe {
 “probe”: “log-probe-123456”,
 “asset”: “assetname”,
}

PROBE Probe
Configuration

A new object to contain specific configuration of probe {
 TBD
}

PROBE Indicator Contains a pattern that can be used to detect suspicious or
malicious cyber or physical activity.

{
 TBD
}

PROBE Intrusion Set A grouped set of adversarial behaviors and resources with
common properties believed to be orchestrated by a single
threat actor.

{
 "type": "intrusion-set",
 "id": "intrusion-set--uuid",
 "created_by_ref": "identity--uuid",
 "created": "2016-04-06T20:03:48.000Z",

Project Number: 786727 - FINSEC D5.1 Report on Integrated Big Data Infrastructure - I

FINSEC | FINSTIX BASIC CONCEPTS 42

Attack Resource Level is an open vocabulary that captures the
general level of resources that a threat actor, intrusion set, or
campaign might have access to.

It ranges from individual, club, contest, team, organization, to
government.
The Attack Motivation open vocabulary describes the Threat
Actor or Intrusion Set's motivation. It ranges from “accidental”,
“coercion”, “dominance”, “ideology”, “notoriety”,
“organizational-gain”, “personal-gain”, “personal-satisfaction”,
“revenge”, to “unpredictable”.

 "modified": "2016-04-06T20:03:48.000Z",
 "name": "Intrusion set name",
 "description": "Intrusion set description",
 “first_seen”: "2016-04-06T20:03:48.000Z",
 “last_seen”: "2016-04-06T20:03:48.000Z",
 “resource_level”: “attack-resource-level-ov entry”,
 "aliases": [...],
 "goals": [...],
 “primary_motivation”: “attack-motivation-ov entry”,
 “secondary_motivations”: [attack-motivation-ov entries]
}

INFRASTRUC
TURE
KBMODEL

Identity Individuals or groups, as well as classes of individuals.

The Identity Class open vocabulary describes the type of entity
that the Identity represents: individual, group, organization,
class (e.g. the Domain Administrators in a system), unknown.

{
 "type": "identity",
 “id": "identity--uuid",
 "created_by_ref": "identity--uuid",
 "created": "2016-04-06T20:03:00.000Z",
 "modified": "2016-04-06T20:03:00.000Z",
 "name": "Identity name",
 “description”: “Identity description”,
 "identity_class": "identity-class-ov entry”,
 “contact_information”: “Contacts”
}

INFRASTRUC
TURE
KBMODEL

Organization Organizations, or groups, organizations, or groups. {
 "type": "organization",
 “id": "organization--uuid",
 "created_by_ref": "identity--uuid",
 "created": "2016-04-06T20:03:00.000Z",
 "modified": "2016-04-06T20:03:00.000Z",
 "name": "Organization name",
 “description”: “Organization description”,
 “contact_information”: “Contacts”
}

INFRASTRUC
TURE
KBMODEL

Asset Asset of the Logical or Physical Infrastructure, like a PC,
Application, ATM, etc.

Keys follow ENISA Taxonomy for Logical (see figure 3 in D2.3)
Keys follow FINSEC Taxonomy for Physical

{
 "type": "asset",
 "id": "asset--uuid"
 "subtype": "Physical or Logical or both",
 “organization”: “organization--uuid”,
 ... standard ...
 "credential”: “pass, key, bio info, … auth”,

Project Number: 786727 - FINSEC D5.1 Report on Integrated Big Data Infrastructure - I

FINSEC | FINSTIX BASIC CONCEPTS 43

 "hardware”: “[“external”: “...”], “[“internal”: “...”],
 "firmware”: “[“external”: “...”], “[“internal”: “...”],
 “Logical Op”: “Update functions… “,
 “Physical Op”: “Update functions…, “,
 “User Info”: “Behavior data, “,
 “User Health”: “Safety against, “,
 “User Property”: “Physical prop, Virtual Prop“,
...

}

INFRASTRUC
TURE
KBMODEL

Tool STIX Legacy - legitimate software that can be used by threat
actors to perform attacks.

{
 "type": "tool",
 "id": "tool--uuid",
 "created_by_ref": "identity--uuid",
 "created": "2016-04-06T20:03:48.000Z",
 "modified": "2016-04-06T20:03:48.000Z",
 "labels": [...],
 "name": "Tool name”,
 “description”: “Tool description”,
 “tool_version”: “Tool version”,
 “kill_chain_phases”: [...]
}

THREAT KB Attack Pattern A type of Tactics, Techniques, and Procedures (TTP) that
describes ways threat actors attempt to compromise targets.

This is an extension of STIX to consider physical attacks

{
 "type": "attack-pattern",
 "id": "attack-pattern--uuid",
 "created": "2018-04-06T20:03:00.000Z",
 "modified": "2019-02-06T18:13:36.140Z",
 "external_references": [...],
 "name": "Attack pattern name",
 "description": "Attack pattern description",
 “kill-chain-phases”: [...]
}

THREAT KB Campaign A grouping of adversarial behaviors that describes a set of
malicious activities or attacks that occur over a period of time
against a specific set of targets.

This is an extension of STIX to consider physical attacks

{
 "type": "campaign",
 "id": "campaign--uuid",
 "created": "2018-04-06T20:03:00.000Z",
 "modified": "2019-02-06T18:13:36.140Z",
 "name": "Campaign name",
 "description": "Campaign description",
 “aliases”: [...],
 “first_seen”: "2018-04-06T20:03:00.000Z",
 “last_seen”: "2019-02-06T18:13:36.140Z",

Project Number: 786727 - FINSEC D5.1 Report on Integrated Big Data Infrastructure - I

FINSEC | FINSTIX BASIC CONCEPTS 44

 “objective”: “Campaign primary goal”
}

THREAT KB Malware A type of TTP, also known as malicious code and malicious
software, used to compromise the confidentiality, integrity, or
availability of a victim’s data or system.

{
 "type": "???",
 "id": "",
 "created": "2016-05-12T08:17:27.000Z",
 "modified": "2016-05-12T08:17:27.000Z",
 "name": "",
 "description": "Malware description",
 "labels": [...],
 “kill-chain-phases”: [...]
}

THREAT KB Tampering An attack to infrastructure aimed to modified the physical
elements-

This is an extension of STIX to consider specific physical attacks .

{
 "type": "tampering",
 "id": "tampering--uuid",
 "created": "2016-05-12T08:17:27.000Z",
 "modified": "2016-05-12T08:17:27.000Z",
 "name": "ATM tampering",
 "description": "Tampering description",
 missing
}

THREAT KB Threat Actor Individuals, groups, or organizations believed to be operating
with malicious intent.

The Threat Actor Role open vocabulary describes the different
roles that a threat actor can play: agent, director, independent,
infrastructure-architect, infrastructure-operator, malware-
author, sponsor.

The Threat Actor Sophistication open vocabulary captures the
skill level of a threat actor: none, minimal, intermediate,
advanced, expert, innovator, strategic.

Attack Resource Level is an open vocabulary that captures the
general level of resources that a threat actor, intrusion set, or
campaign might have access to.

{
 "type": "threat-actor",
 "id": "threat-actor--uuid",
 "created_by_ref": "identity--uuid",
 "created": "2016-04-06T20:03:48.000Z",
 "modified": "2016-04-06T20:03:48.000Z",
 "labels": [...],
 "name": "Threat Actor name",
 "description": "Threat Actor description",
 "aliases": [...],
 "roles": [threat-actor-role-ov entries],
 "goals": [...],
"sophistication": "threat-actor-sophistication-ov entry",
 "resource_level": "attack-resource-level-ov entry",
 "primary_motivation": "attack-motivation-ov entry",
 “secondary_motivations”: [attack-motivation-ov entries],
 “personal_motivations”: [attack-motivation-ov entries]
}

Project Number: 786727 - FINSEC D5.1 Report on Integrated Big Data Infrastructure - I

FINSEC | FINSTIX BASIC CONCEPTS 45

It ranges from individual, club, contest, team, organization, to
government.

The Attack Motivation open vocabulary describes the Threat
Actor or Intrusion Set's motivation. It ranges from “accidental”,
“coercion”, “dominance”, “ideology”, “notoriety”,
“organizational-gain”, “personal-gain”, “personal-satisfaction”,
“revenge”, to “unpredictable”.

ACTION Course of Action An action taken to either prevent an attack or respond to an
attack.
See Countermeasures in Fig 6. of D2.3

{
 "type": "course-of-action",
 "id": "course-of-action--uuid",
 "created_by_ref": "identity--uuid",
 "created": "2016-04-06T20:03:48.000Z",
 "modified": "2016-04-06T20:03:48.000Z",
 "name": "Course of action name",
 "description": "Course of action description"
}

PRESENTATI
ON

CP Threat
Intelligence

Cyber Physical Threat Intelligence

Keys follow ENISA Taxonomy (see figure 5 in D2.3)

{
 "type": "cpti",
 "id": "cpti--uuid",
 "asset": "asset--uuid",
 “attack-pattern”: “attack-pattern--uuid”,
 ..
 “nefarious activity”: [
 “firmware_mod”: [...],
 “remote_firmware_att”: [...],
 “attack_persistence”: “Firmware modification/Bootkit”,
 “info_access”],
 “eavesdropping”: [...],
 “physical_att”: [...],
 “damage”: [...],
 “failures”: [...],
 “outages: [...],
 “legal”: [...]
}

COLLABORA
TION

Report Collections of threat intelligence focused on one or more topics,
such as a description of a threat actor, malware, physical attack
technique, including contextual details.

{
 TBD
}

Project Number: 786727 - FINSEC D5.1 Report on Integrated Big Data Infrastructure - I

FINSEC | FINSTIX Relationships 46

The Cyber Physical Threat Intelligence (CPTI) is the principal object since it collects and is enriched by threat information as soon as they are gathered from
the probes and processed by the Predictive Analytics module. One or more CPTI objects are used to generate the output of the intelligence process, that is a
report about ongoing or possible future attacks on one or more assets belonging to the infrastructure. The report can be accessed through the FINSEC
dashboard and shared through the FINSEC collaborative module.

FINSTIX Relationships

FINSTIX basic objects will be put in relations with KB Objects while being transformed in the Engine.

The different FINSTIX objects can be related through either direct key-value relationships. Starting from the infrastructure, each asset is owned by a unique
organization, thus it contains a key-value relationship that links itself to an organization object. In addition, each probe is related to a single asset, for this
reason the probe object contains a key-value relationship that points at the related asset. Moreover, an observed data is related to a specific asset, then it
presents a key-value reference to specify the particular asset. Finally, the Cyber Physical Threat Intelligence (CPTI) contains a key-value reference to the threat
target asset.

In general, the Threat Knowledge Base objects are related through the Relationship Objects defined in STIX (see Table 8).

Table 8: STIX Relationship Objects

Source Relationship Type Target

attack-pattern targets identity, vulnerability

Project Number: 786727 - FINSEC D5.1 Report on Integrated Big Data Infrastructure - I

FINSEC | FINSTIX Relationships 47

uses malware, tool

campaign attributed-to intrusion-set, threat-actor

targets identity, vulnerability

uses attack-pattern, malware, tool

course-of-action mitigates attack-pattern, malware, tool, vulnerability

indicator indicates attack-pattern, campaign, intrusion-set, malware, threat-actor, tool

intrusion-set attributed-to threat-actor

targets identity, vulnerability

uses attack-pattern, malware, tool

malware targets identity, vulnerability

uses tool

variant-of malware

threat-actor attributed-to identity

impersonates identity

targets identity, vulnerability

uses attack-patter, malware, tool

tool targets identity, vulnerability

Project Number: 786727 - FINSEC D5.1 Report on Integrated Big Data Infrastructure - I

FINSEC | FINSTIX Relationships 48

The research leading to these results has received funding from the European Union’s Horizon 2020
Research and Innovation Programme, under grant agreement no 700071.

Horizon 2020 Programme

Instrument: Innovation Action

References

GFT, Deliverable 2.4, H2020 BigDataStack, GA No 779747, 2018

Sandy Ryza, Uri Laserson, Josh Wills, Sean Owen, Advanced Analytics with Spark, O'Reilly Media, April
2015

Krishna Sankar, Holden Karau, Fast Data Processing with Spark - Second Edition, Packt, March 2015

Venkat Ankam, Big Data Analytics with Spark and Hadoop, Packt, September 2016

Nick Pentreath, Machine Learning with Spark, Packt, February 2015

Cloudera, Apache Kafka Guide, February 2019

Michael Mühlbeyer, Introduction to Apache Kafka, Trivadis, July 2018

Neha Narkhede, Gwen Shapira and Todd Palino, Kafka: the Definitive Guide, O’Reilly

Manish Kumar, Chanchal Singh, Building Data Streaming Applications with Apache Kafka

Radu Gheorghe, Matthew Lee Hinman, Roy Russo, Elasticsearch in action, Manning

Clinton Gormley, Zachary Tong, Elasticsearch The Definitive Guide, O’Reilly

Elasticsearch MongoDB integration:

https://researchcenter.paloaltonetworks.com/2017/11/engineers-at-work-enhancing-aperture-
elasticsearch-mongodb/

https://www.nuxeo.com/fr/resources/supercharging-your-content-management-stack-with-
mongodb-and-elasticsearch/

https://kafka.apache.org/documentation/

https://researchcenter.paloaltonetworks.com/2017/11/engineers-at-work-enhancing-aperture-elasticsearch-mongodb/
https://researchcenter.paloaltonetworks.com/2017/11/engineers-at-work-enhancing-aperture-elasticsearch-mongodb/
https://www.nuxeo.com/fr/resources/supercharging-your-content-management-stack-with-mongodb-and-elasticsearch/
https://www.nuxeo.com/fr/resources/supercharging-your-content-management-stack-with-mongodb-and-elasticsearch/
https://kafka.apache.org/documentation/

