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Executive Summary 
FINSEC BIG DATA INFRASTRUCTURE aims to provide a complete stack comprising an infrastructure 
management system to support the analysis and prediction algorithms of the FINSEC platform, 
managing the historical and real data of the security, the knowledge base and the description of the 
assets, being completely scalable, adaptable to runtime and high performance. 

In this way, FINSEC BIG DATA INFRASTRUCTURE will respond to the needs of big data operations and 
data intensive applications. The system will base all infrastructure management decisions on data 
analysis, monitoring data from implementations and the logic derived from data operations that 
govern and influence storage, compute and network resources, as well as their interdependencies. In 
addition to the infrastructure management system, "Data as a Service" will be offered to data 
providers, decision makers, private and public organizations. Approaches to data cleansing, data 
layout and efficient storage, combined with seamless data analysis, will be holistically implemented 
across multiple data stores and locations. 

In order to provide the information required for better management of the infrastructure, FINSEC BIG 
DATA INFRASTRUCTURE will provide a set of basic services, such as the CRUD DB interface, which 
facilitates the analysis and sizing of data-driven applications in terms of service forecasting required 
data, their interdependencies with the micro-services application and the underlying resources 
required. This will allow the identification of data properties of their applications and their data 
requirements, thus enabling FINISEC BIG DATA INFRASTRUCTURE to perform the deployment with 
specific performance and quality assurance. In addition, a data toolkit will allow data scientists to 
assimilate their data analysis functions and specify their preferences and constraints, which will be 
exploited by the infrastructure management system for resources and data management. Finally, a 
process modelling framework will be provided to enable function-based modelling of processes, which 
will be mapped to an automated analysis of the process of a concrete technical level. 

The aforementioned key results of FINSEC BIG DATA INFRASTRUCTURE are reflected in a set of main 
constituent elements in the corresponding general stack architecture. This deliverable describes the 
key functionalities of the general architecture, the interactions between the main building blocks and 
their components, while providing a first version of the interiors of these components regarding the 
research approaches to be implemented during the project. Further detailed information and 
specifications of the components will be provided through the relevant design reports and 
specification of the relevant project work packages. 
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1. Introduction 
 

This document describes the solutions to integrate the predictive and collaborative data-driven 
machine learning algorithms with a Big Data infrastructure specifically designed for the FINSEC 
Platform, called in the following FINSEC BIG DATA INFRASTRUCTURE.  

The FINSEC BIG DATA INFRASTRUCTURE starts from the business requirements and use cases analyzed 
in the previous tasks of the projects (T2.1, T2.3 and T2.4) and is specifically designed to be hosted in 
the cloud in order to work seamlessly with the other applications of the Reference Architecture (D2.4) 
to enable the delivery of security services based on the SECaaS paradigm.  

The design involves the methods for integration of the data-driven components of the project’s 
security toolbox (SIEM, CCTV, Anomaly Detection, Predictive Analytics, RAE, PenTest) over the same 
infrastructures, along with the integration of the analytics infrastructure of the project developed in 
other WPs. 

1.1.  Background 

The new data-driven industrial revolution highlights the need for big data technologies, to unlock the 
potential in various application domains (e.g. finance, security, transportation, healthcare, etc). In this 
context, big data analytics frameworks exploit several underlying infrastructure and cluster 
management systems.  

However, these systems have not been designed and implemented in a “big data context”, and they 
instead emphasise and address the computational needs and aspects of applications and services to 
be deployed. FINSEC BIG DATA INFRASTRUCTURE aims at addressing these challenges (depicted in 
Figure 1) through robust microservices that range from a scalable, runtime-adaptable infrastructure 
management system (to support analytics according to data aspects), to techniques for dimensioning 
big data applications, modelling and analysis of organizations, assets and physical logical 
infrastructure, as well as provisioning data-as-a-service, by exploiting a seamless big data framework. 
The Figure 1 shows how a BigData infrastructure can face (by which means and with which benefits) 
the previously mentioned challenges.  

 

Figure 1: Technical challenges1 

                                                           

1 GFT, BigDataStack, , D2.4, GA No 779747, 2018 
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1.2.  Document structure  

The structure of the document is aimed at covering in a complete way all the aspects of the FINSEC 
BIG DATA INFRASTRUCTURE, from the technological background laying behind the design work done 
to the integration of the data model into the infrastructure, passing through the functional and 
technical requirements coming from the outcomes of the previous activities within the project and 
the description of the design features of the infrastructure. The document is structured as follows: the 
current section provides the background and context of this task and deliverable, together with an 
overview of the relevant input from the previous tasks and the output for the following activities of 
the project; Section 2 provides State of the Art relevant to Big Data Infrastructure from both the 
database and application points of view; Section 3 is focused on an Analysis and Mapping of the 
Requirements from previous tasks and from different aspects of the project; Section 4 represents the 
core of the deliverable, and contains the FINSEC BIG DATA INFRASTRUCTURE design including the key 
provisions and the overall architecture and a description of the main architecture components; 
Section 5 deals with implementation and integration aspects of the infrastructure, with the details 
about its deployment for FINSEC purposes; conclusions are drawn in Section 6. The document is 
completed by ANNEX A about the data model that was thought for the project. 

1.3.  Relevant Task Input 

The deliverable takes as input some information coming from the previous tasks within the project. 
The main input are coming from the definition of the Reference Architecture done in Task 2.5 and 
formalized in the Deliverable 2.4, which identifies the boundaries of the data layer, thus setting the 
data exchange interfaces between the FINSEC BIG DATA INFRASTRUCTURE and the other relevant 
building blocks of the project. Moreover, Task 2.4 dealing with the integrated data model (cyber + 
physical information and events) represents an input source for Task 5.1, giving details about the 
nature of the data to be exchanged and stored by the infrastructure. Finally, Section 3 explains how 
some requirements for the FINSEC BIG DATA INFRASTRUCTURE come from the definition of the 
predictive security done in Task 2.3. 

1.4.  Relevant Task Output 

The main outcome of this deliverable, will be the definition of a detailed design architecture and the 
choice of the technologies for the BigData infrastructure. This kind of information will be needed in 
the following of Task 5.1, where the infrastructure will be implemented and integrated within M18, 
with the preparation of Deliverable 5.2. The infrastructure will be integrated together with all the 
other modules of the FINSEC platform in Task 5.3 (probes, application, services, infrastructures, etc.) 
and tested during WP6 pilot activities. 

 

2. State of the Art  
Infrastructural technologies are the core of the Big Data ecosystem. For decades, enterprises relied 
on relational databases for processing structured data. However, the volume, velocity and variety of 
data mean that relational databases often cannot deliver the performance and latency required to 
handle large, complex data. Thus, new database solutions have been emerged in order to provide 
advantages in terms of performance, scalability, and suitability for Big Data environments. Among 
these solutions, there are NoSQL databases, NewSQL databases, and file storage systems like HDFS 
and GFS detailed in the following sections.  

Taking into account the FINSEC requirements arising from the previous phases of the project, in 
particular the work of WP2 in Tasks T2.3, Task T2.4 and related deliverables D2.3 and D2.4, and 
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considering the FINSEC DATA MODEL for the Cyber Physical Threat Intelligence (CPTI) in the financial 
sector addressed by the FINSEC Platform, in the following sections the most relevant state of the art 
solutions to support complex and extensible data models and applications will be analysed.  

Moreover, solutions for managing large quantities of data, their ingestion and Big Data infrastructure 
will be analysed to form the background on top of which the specific FINSEC BIGDATA 
INFRASTRUCTURE will be built. 

2.1.  NoSQL Solutions 

One of the key advances in resolving problem of big data has been the emergence of NoSQL as an 
alternative database technology. A very flexible and schema-less data model, horizontal scalability, 
distributed architectures, and the use of languages and interfaces that are “not only” SQL typically 
characterize this technology. NoSQL is particularly useful for storing unstructured data, which is 
growing far more rapidly than structured data and does not fit the relational schemas of RDBMS. The 
NoSQL data model does not guarantee ACID properties (Atomicity, Consistency, Isolation and 
Durability) but instead it guarantees BASE properties (Basically Available, Soft state, Eventual 
consistency). In addition, it is in compliance with the CAP (Consistency, Availability, Partition 
tolerance) theorem. NoSQL databases have many data models: Key-Value, Document, Column, Graph 
and Multi-model. We focus on document databases because it stores data as documents that are 
based on a specific encoding such as JSON, BSON, XML, etc. Although they differ in their data model, 
all NoSQL databases allow a relatively simple storage of unstructured, distributed data and achieve 
high scalability. They are best adapted for applications that don’t use a fixed schema, or don’t require 
ACID operations, and for intensive read and update OLTP (On-Line Transaction Processing) workloads. 

 

A. MongoDB is an open source, document oriented database that is written in C++. In MongoDB, 
the documents are mainly stored in BSON (Binary JSON) format which is efficient both in 
storage space and scan speed when compared to JSON. MongoDB defines its own query 
language. Queries can be performed with complex criteria, conditions, sorting, embedded 
documents, etc. It is also possible to use indexing, like in relational databases, which allows 
performing faster queries. In addition, MongoDB supports MapReduce, which allows complex 
aggregations across documents. The changes to a single-document are guaranteed to be 
atomic. The addition of multi-document ACID transactions in MongoDB 4.0 makes it the only 
open source data platform to combine the speed, flexibility, and power of the document 
model with ACID data integrity guarantees. Through snapshot isolation, transactions provide 
a globally consistent view of data, and enforce all-or-nothing execution to maintain data 
integrity. MongoDB uses the GridFS, a distributed file system that stores big files in the form 
of chunks or parts. Database Sharding can also be applied to allow distribution across multiple 
systems for horizontal scalability. Although, MongoDB still supports the master-slave 
replication, replica sets are recommended for new production deployments to replicate data 
in a cluster. Replica sets are usually used for data redundancy, automated failover, read 
scaling, server maintenance without downtime, and disaster recovery. In general, MongoDB 
is an excellent choice for projects that deal with massive volumes of data and significant scale-
out requirements where high performance is critical. It also helps in situations where data is 
too complicated and heterogeneous to be modelled in a relational schema or enable real-time 
analytics. MongoDB is frequently used for large scalable applications like mobile apps, content 
management, real-time analytics, and applications involving the Internet of Things.  
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Figure 2: MongoDB architecture 

B. Elasticsearch is a highly scalable open-source full-text search and analytics engine. It is 
designed to store, search, and analyze big volumes of data quickly and in near real time. It was 
built on top of Apache Lucene, which is an open source search engine library. Elasticsearch 
provides a rich, flexible, query language based on JSON called Query DSL (Domain Specific 
Language) which allows user to build much more complicated, robust queries. An index in 
Elasticsearch is similar to a database in a RDBMS, it can store different types of documents, 
update them, and search for them. Each document is a JSON object which consists of zero or 
more fields, where each field is either a primitive type or a more complex structure. A 
document has a Document type associated with it, however, all documents are schema-free, 
which means that two documents of the same type can have different sets of fields. In order 
to store a large amount of data that can exceed the hardware limits of a single node, 
Elasticsearch provides the ability to subdivide the index into multiple pieces called shards. 
Moreover, Elasticsearch allows to make one or more copies of index’s shards into what are 
called replica shards. Replication is important for better availability and performance in case 
a shard/node fails. 

Elasticsearch is based on REST architecture and provides API endpoints to not only perform 
CRUD operations over HTTP API calls, but also to enable users to perform cluster monitoring 
tasks using REST APIs. REST endpoints also enable users to make changes to clusters and 
indices settings dynamically. Elasticsearch operations such as reading or writing data usually 
take less than a second to complete which lets Elasticsearch a good choice for near real-time 
use cases such as application monitoring and anomaly detection. 

C. CouchDB is an Open Source NoSQL Database implemented in concurrency-oriented language 
Erlang. It utilizes JSON to store data and JavaScript as its query language. It uses a B-tree index, 
updated during data modifications. These modifications have ACID properties on the 
document level and the use of MVCC (Multi-Version Concurrency Control) enables readers to 
never block. CouchDB’s document manipulation uses optimistic locks by updating an append-
only B-tree for data storage, meaning that data must be periodically compressed. This 
compression, in spite of maintaining availability, may hinder performance. Regarding fault-
tolerant replication mechanisms, CouchDB supports both master-slave and master-master 
replication that can be used between different instances of CouchDB or on a single instance. 
Scaling in CouchDB is achieved by replicating data, a process which is performed 
asynchronously. It does not natively support sharding/partitioning. Consistency is guaranteed 
in the form of strengthened eventual consistency, and conflict resolution is performed by 
selecting the most up to date version (the application layer can later try to merge conflicting 
changes, if possible, back into the document). 



Project Number:  786727 - FINSEC D5.1 Report on Integrated Big Data Infrastructure - I 
  

 

FINSEC | State of the Art 10 

 

D. Couchbase is an open source, distributed, NoSQL document-oriented database for latency 
sensitive, interactive, always-on (24x7) applications. It is derived from CouchDB and Membase 
databases. Couchbase documents are stored as JSON. Data are distributed across nodes and 
replicated with a master-master model. The greatest differences compared to CouchDB it’s 
the introduction of N1QL, a query language that improves data transformation and 
manipulation, and a Memcached-based caching technology that best suits real time access. 
Memcached allows to cache data in RAM memory across the cluster nodes what increases the 
performance for real-time requirements. The data is also persisted on disk. Couchbase 
provides real time data processing by using Kafka, Storm, and Sqoop components and it is 
scalable thanks to its identical nodes and automatic sharding. 

2.2.  NewSQL Solutions 

NewSQL is a technology that aims at making current relational SQL more scalable. It’s an attempt to 
combine NoSQL and SQL. SQL provides ACID properties but isn’t fast enough when it comes to 
concurrency. NoSQL aims at Brewers CAP theorem but doesn’t necessarily provide ACID properties. 
NewSQL tries to provide relational DBMS that has same scalability as NoSQL for OLTP while still 
providing ACID properties. 

The general features of NewSQL technologies are well described by VoltDB, which represents a 
general paradigm for this family of solutions. 

 VoltDB is an in-memory database, which depends on the main memory for data storage. VoltDB is an 
ACID relational database that uses a shared-nothing architecture, ensuring that the data is always 
correct and available. The data is organized into memory partitions, and transactions are sent by 
clients connected to the database. VoltDB uses horizontal scalability to increase the capacity of the 
nodes of the existing database, or the number of nodes in a shared-nothing cluster. For high 
availability VoltDB uses partitions which are transparently replicated across multiple servers. If one 
fails all data remains available and consistent for continuum operation. Memory performance with 
durability on the disk is possible with the VoltDB snapshot. The snapshot is a complete copy of the 
database at a certain point in time that is written on the disk. VoltDB uses asynchronous replication 
on the WAN (Wide Area Network) for loss recovery. The remote copy is a read-only while it is not 
considered to be the primary database.  Voltdb is a great choice for use cases where very high 
performance and predictably low latency are critical as well as where accurate counting/accounting is 
important, such as in policy enforcement, personalization, fraud/anomaly detection, and other 
request-response style fast-decisioning and fast data pipeline applications. 

2.3. Comparative table of relevant data base solutions 

Table 1: comparison between DB solutions 

Name Couchbase    MemSQL  MongoDB  Elasticsearch VoltDB  

Description JSON-based 
document store 
derived from 
CouchDB with a 
Memcached 
compatible 
interface. 
Originally called 
Membase. 

MySQL wire-
compliant 
distributed RDBMS 
that combines an 
in-memory row-
oriented and a disc-
based column-
oriented storage. 

NoSQL database, a  

document store. 

A distributed, RESTful search 

and analytics engine based on 

Apache Lucene. 

Elasticsearch allows the 

combination of many types of 

searches such as structured, 

unstructured, geo, and metric 

Distributed In-
Memory NewSQL 
RDBMS Used for 
OLTP applications 
with a high 
frequency of 
relatively simple 
transactions that 
can hold all their 
data in memory. 
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Primary 
database 

model 

Document store Relational DBMS Document store Search engine Relational DBMS 

Secondary 
database 

models 

 Document store 

Key-value store 

Key-value store Document store Key-value store 

Website www.couchbase.co
m 

www.memsql.com www.mongodb.com www.elastic.co/products/elast
icsearch 

www.voltdb.com 

documentatio
n 

docs.couchbase.co
m 

docs.memsql.com docs.mongodb.com/m
anual 

www.elastic.co/guide/en 
/elasticsearch/reference/ 
current/index.html 

docs.voltdb.com 

Developer Couchbase, Inc. MemSQL Inc. MongoDB, Inc. Elastic VoltDB Inc. 

Initial release 2011 2013 2009 2010 2010 

Current 
release 

6.0.0, October 
2018 

6.7, November 
2018 

4.0.5, December 2018 6.6.0, January 2019 8.4, January 2019 

License Open Source, 
Apache version 2 

Commercial. 
Free developer 
edition available. 

Open Source, 
MongoDB Inc.'s Server 
Side Public License v1. 
Prior versions were 
published under GNU 
AGPL v3.0. 
Commercial licenses 
are also available. 

Open Source, Apache Version 
2; Elastic License 

Open Source, AGPL 
for Community 
Edition. 
Commercial license 
for Enterprise, 
AWS, and Pro 
Editions 

Cloud Service Yes Yes Yes (MongoDB Atlas 

DBaaS) 

Yes Yes 

Cloud-based 
only 

no no no  no no 

Implementatio
n language 

C, C++, Go and 
Erlang 

C++ C++ Java Java, C++ 

Server 
operating 

systems 

Linux, OS X, 
Windows 

Linux 64 bit Linux, OS X, Solaris, 
Windows 

All OS with a Java VM Linux, OS X 

Data scheme schema-free Yes Although schema-
free, documents of 
the same collection 
often follow the same 
structure. Optionally 
impose all or part of a 
schema by defining a 
JSON schema. 

schema-free, Flexible type 
definitions. Once a type is 
defined, it is persistent 

Yes 

XML support no no no no  
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Secondary 
indexes 

Yes Yes Yes Yes, All search fields are 
automatically indexed 

Yes 

SQL Support SQL-like query 
language (N1QL) 

yes, but no triggers 
and foreign keys 

Read-only SQL queries 
via the MongoDB 
Connector for BI 

SQL-like query language Yes, only a subset of 
SQL 99 

APIs and other 
access 

methods 

Memcached 

protocol 

RESTful HTTP API 
(only for server 
administration) 

JDBC 

ODBC 

proprietary protocol 
using JSON 

Java API 

RESTful HTTP/JSON API 

Java API 

RESTful HTTP/JSON 

API 

JDBC 

Supported 
programming 

languages 

.Net 

C 

Clojure 

ColdFusion 

Erlang 

Go 

Java 

JavaScript 

(Node.js) 

Perl 

PHP 

Python 

Ruby 

Scala 

Tcl 

Bash 

C 

C# 

Java 

JavaScript (Node.js) 

Python 

C 

C# 

C++ 
Erlang 
Haskell 

Java 

JavaScript 

Perl 

PHP 
Python 
Ruby 

Scala 
Through unofficial 
drivers : 
Actionscript 

Clojure 

ColdFusion 

D 

Dart  

Delphi 

Go 

Groovy 

Lisp 

Lua 

MatLab  

PowerShell 

Prolog 

R 

Smalltalk 

.Net 

Groovy 

Java 

JavaScript 

Perl 

PHP 

Python 

Ruby 

C# 

C++ 

Go 

Java 

JavaScript  
(Node.js) 

PHP 

Python 
Erlang (Not officially 
Supported) 

Server-side 
scripts (Stored 

Procedures) 

View functions in 
JavaScript 

yes JavaScript Yes Java 

Triggers Yes, via the TAP 
protocol 

No No Yes, using the 'percolation' 
feature 

No 

Partitioning 
methods  

Sharding Sharding Sharding Sharding Sharding 

Replication 
methods  

Master-master 

replication 

(including cross 

data center 

replication) 

Master-slave 
replication 

Master-slave 
replication 

Master-slave 
replication 

Yes Master-master 

replication 

Master-slave 
replication 
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MapReduce Yes No Yes ES-Hadoop Connector No 

Consistency 
concepts 

Eventual 

Consistency 

Immediate 
Consistency 
(selectable on a 
per-operation 
basis) 

Immediate 
Consistency only 
within each node 

Eventual Consistency 

Immediate 
Consistency (can be 
individually decided 
for each write 
operation) 

Eventual Consistency, 
Synchronous doc based 
replication. Get by ID may 
show delays up to 1 sec. 
Configurable write 
consistency: one, quorum, all 

Strong Consistency 

Referential 
integrity 

(Foreign keys) 

No No No (typically not used, 
however similar 
functionality with 
DBRef possible) 

No No (FOREIGN KEY 
constraints are not 
supported) 

Transaction 
concepts  

No, atomic 
operations possible 
only within a single 
document 

ACID (Only isolation 
level: READ 
COMMITED) 

Multi-document ACID 
Transactions with 
snapshot isolation 

No ACID (Transactions 
are executed single-
threaded within 
stored procedures) 

Concurrency yes yes, multi-version 
concurrency 
control (MVCC) 

yes Yes Yes, Data access is 
serialized by the 
server 

Durability yes yes yes (Optional) Yes Yes, Snapshots and 
command logging 

In-memory 
capabilities 

 yes Yes, In-memory 
storage engine 
introduced with 
MongoDB version 3.2 

Memcached and Redis 
integration 

 

User concepts User and 
Administrator 
separation with 
password-based 
and LDAP 
integrated 
Authentication 

fine grained access 
rights according to 
SQL-standard 

Access rights for users 
and roles 

 Users and roles 
with access to 
stored procedures 

Real-time 

Capabilities 

        Yes 

 

 

Distributed Storage Systems 

File storage systems are another solution to deal with large volume of data in distributed 
environments. The major ones are Google File Storage (GFS) and Hadoop Data File Storage (HDFS). 

A.  GFS is a scalable distributed file system developed by Google to meet the needs of its large 
distributed data-intensive applications. It is designed for environments that are prone to failures, that 
manipulate huge data files by frequent read/append operations, and that need to process data in 
batch rather than in real-time. Thus, it is highly fault-tolerant and reliable, and emphasizes on high 
throughput rather than low latency. 

 B.   HDFS is an open source implementation of GFS. It is part of the Apache Hadoop, an open source 
framework for distributed storage and distributed processing of large data sets (see below for further 
details). The biggest clusters implementing Hadoop are composed of 45 000 machines and store up to 
25 petabyte of data. 
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2.4.  BIG DATA TOOLS AND APPLICATIONS 

Other basic tools and applications will be evaluated in order to be integrated into the FINSEC BIG DATA 
INFRASTRUCTURE. The following subsections present the more relevant ones. 

2.5. Apache Hadoop Framework  

Apache Hadoop (http://hadoop.apache.org/) is a collection of open-source software utilities to 
manage a large network of computers to solve problems involving massive amounts of data and 
computation. Hadoop is one of the most important frameworks for working with Big Data. Hadoop 
biggest strength is scalability: it upgrades from working on a single node to thousands of nodes (each 
offering local computation and storage) without any issue in a seamless manner, allowing the 
distributed processing of large data sets across clusters of computers using simple programming 
models. Rather than rely on hardware to deliver high-availability, the framework itself is designed to 
detect and handle failures at the application layer, so delivering a highly-available service on top of a 
cluster of computers, each of which may be prone to failures. 

The framework is an actual set of different modules: 

● Hadoop Common: The common utilities that support the other Hadoop modules. 
● Hadoop Distributed File System (HDFS): A distributed file system that provides high-

throughput access to application data. 
● Hadoop YARN: A framework for job scheduling and cluster resource management. 
● Hadoop MapReduce: A YARN-based system for parallel processing of large data sets 
● Hadoop Ozone: An object store for Hadoop. 

Within the major advantages provided by Hadoop it is possible to highlight: 

● The framework allows the user to quickly write and test distributed systems. It is 
efficient, and it automatic distributes the data and work across the machines and in 
turn, utilizes the underlying parallelism of the CPU cores. 

● Hadoop does not rely on hardware to provide fault-tolerance and high availability 
(FTHA), rather Hadoop library itself has been designed to detect and handle failures 
at the application layer. 

● Servers can be added or removed from the cluster dynamically and Hadoop continues 
to operate without interruption. 

● Hadoop (apart from being open source) is compatible on all the platforms since it is 
Java based. 

Finally, many other Hadoop-related projects have been developed at Apache, which actually realize 
an ecosystem of tools that further enrich the Hadoop capabilities. 

2.6. Apache Storm framework 

Apache Storm (http://storm.apache.org) is a distributed real-time big data-processing system. Storm 
is designed to process vast amount of data in a fault-tolerant and horizontal scalable method. It is a 
streaming data framework that has the capability of highest ingestion rates. Though Storm is stateless, 
it manages distributed environment and cluster state via Apache ZooKeeper 
(https://zookeeper.apache.org/). It is simple and enables to execute all kinds of manipulations on real-
time data in parallel. Apache Storm is continuing to be a leader in real-time data analytics. Storm is 
easy to setup, operate and it guarantees that every message will be processed through the topology 
at least once. 
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Storm has many use cases: real-time analytics, online machine learning, continuous computation, 
distributed RPC, ETL, and more. Storm is fast: a benchmark clocked it at over a million tuples processed 
per second per node. It is scalable, fault-tolerant, guarantees your data will be processed, and is easy 
to set up and operate. 

Within the major advantages provided by Storm it is possible to identify: 

● Storm is open source, robust, and user friendly. It could be utilized in small companies as well 
as large corporations. 

● Storm is fault tolerant, flexible, reliable, and supports any programming language. 
● Allows real-time stream processing. 
● Storm is unbelievably fast because it has enormous power of processing the data. 
● Storm can keep up the performance even under increasing load by adding resources linearly. 

It is highly scalable. 
● Storm performs data refresh and end-to-end delivery response in seconds or minutes depends 

upon the problem. It has very low latency. 
● Storm has operational intelligence. 
● Storm provides guaranteed data processing even if any of the connected nodes in the cluster 

die or messages are lost. 

It’s also relevant to briefly compare the features provided by Hadoop and Storm frameworks. Basically 
they’re used for analysing big data. Both of them complement each other and differ in some aspects. 
Apache Storm does all the operations except persistency, while Hadoop is good at everything but lags 
in real-time computation. Storm is designed for Real-time stream processing and it’s stateless, while 
Hadoop for Batch processing and it’s stateful. A Storm streaming process can access tens of thousands 
messages per second on cluster, while Hadoop HDFS uses MapReduce framework to process vast 
amount of data that takes minutes or hours. Storm topology runs until shutdown by the user or an 
unexpected unrecoverable failure, while Hadoop MapReduce jobs are executed in a sequential order 
and completed eventually. Finally, both are distributed and fault-tolerant. 

2.7. H20.AI Framework 

H2O.ai (https://www.h2o.ai/) is a framework focused on bringing AI in general and Machine/Deep 
Learning in particular to businesses through software. Its flagship product is H2O, the leading open 
source platform that makes it easy for financial services, insurance companies, and healthcare 
companies to deploy AI and deep learning to solve complex problems. There are several organizations 
and data scientists using H20.ai for different objectives such as predictive maintenance and 
operational intelligence. 

Using in-memory compression, H2O handles billions of data rows in-memory, even with a small 
cluster. To make it easier and to create complete analytic workflows, H2O’s platform includes 
interfaces for R, Python, Scala, Java, JSON, and CoffeeScript/JavaScript, as well as a built-in web 
interface, Flow. 

H2O is designed to run in standalone mode, on Hadoop, or within a Spark Cluster, and typically deploys 
within minutes. It also includes many common machine learning algorithms, such as: 

·         generalized linear modeling (linear regression, logistic regression, etc.), 

·         Naive Bayes, 

·         Principal components analysis, 

·         k-means clustering 
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 H2O implements best-in-class algorithms at scale, such as distributed random forest, gradient 
boosting, and deep learning. H2O also includes a Stacked Ensembles method, which finds the optimal 
combination of a collection of prediction algorithms using a process known as ”stacking.” With H2O, 
one can build thousands of models and compare the results to get the best predictions. 

H2O is nurturing a grassroots movement of physicists, mathematicians, and computer scientists to 
herald the new wave of discovery with data science by collaborating closely with academic researchers 
and industrial data scientists. Stanford university giants Stephen Boyd, Trevor Hastie, and Rob 
Tibshirani advise the H2O team on building scalable machine learning algorithms allowing to improve 
the performance and results. 

2.8. Apache Spark framework 

Apache Spark is a recent state-of-the-art map-reduce technology that provides 100x speedup 
compared with Hadoop. It supports three different execution modes: batch, streaming and structured 
streaming (Spark Streaming). The batch mode is the most basic and provides API to process a batch of 
data. Streaming and spark streaming supports creating a streaming pipeline, where the input data 
arrives as a stream (e.g., Kafka stream) and processed as micro-batches. The main difference between 
Spark streaming and Structured Spark streaming is that the latter provides API to handle out-of-order 
events and represents a stream as an infinite table, while the former creates micro-batches to be 
processed sequentially by the pipeline.  

Apache Spark is strongly supported both by academy and industry with a rich ecosystem for processing 
data from different data sources. It includes Machine Learning library and Graph analytics that simplify 
creation of scalable analytics by leveraging already implemented algorithms. 

The core of Spark is based on Resilient Distributed Data (RDD) and DAG scheduler that provides fault-
tolerance in case of cluster nodes failures. Spark provides a higher level Dataframe data structure as 
an abstraction of tables. Spark application can be developed in Java, Scala, Python or R.  

2.9. Apache Kafka 

Apache Kafka is an open-source stream-processing software platform aiming to provide a unified, 
high-throughput, low-latency platform for handling real-time data feeds. 

One of the main capabilities of the platform is to publish streams of data or records, like message 
queue; moreover, it is able to store streams of records in a fault-tolerant way, thus making it a good 
candidate for security applications in the financial sector. The streams of records can be processed as 
well. Generally, Kafka is used to build real-time applications or real-time data pipelines between 
applications. 

From a hardware point of view, Kafka runs on a cluster of servers, managing records composed by a 
key, a value, and a timestamp. The platform adopts 4 different typologies of APIs, allowing the 
applications to interact with it: the Producer API (used to publish streams of records), the Consumer 
API (to process them), the Streams API (to transform input streams of records into output records) 
and the Connector API (to connect Kafka platform to existing applications or data systems, such as 
Databases). 

Clients for Kafka are available in many different languages. 
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Table 2: comparison between BigData management technologies 

Name Hadoop    Storm H2O Spark Kafka 

Description Set of tools for 
management of 
computer 
networks for 
processing large 
amounts of 
data.Highly 
scalable. 

Distributed BigData 
processing system 
in real time; open 
source and user 
friendly, flexible, 
supports any 
programming 
language. 

Open source platform 
for financial services 
and insurance 
companies to deploy 
AI to solve complex 
problems. 

Map-reduce technology 

speeding up the process if 

compared with the other ones. 

Compatible with many 

different environments. 

Open-source 
stream-processing 
software platform 
to handle real-time 
data streams. 

Relevance Relevant to FINSEC 
because of its fault 
tolerance 
(distributed 
environment). 
It is compatible 
with all the 
platforms.  

FINSEC needs to 
manage huge 
amounts of data in 
a robust manner, 
with analytics and 
machine learning 
functionalities. The 
fault-tolerant 
features of Storm 
make it fully 
relevant for a 
security 
application. 

Specific for financial 
services and insurance 
companies. 
Interfaces available 
with many different 
environments and a 
web interface. 
Includes different 
machine learning 
algorithms. 

Creation of micro-batches of 

data starting from a data 

stream. 

Includes a machine learning 

library. 

Fault tolerance in case a node 

fails. 

Compatible with many 

different environments. 

 

Key-Value based 
records. 
Relevant to FINSEC 
because of its fault 
tolerance 
(distributed 
environment). 
Compatible with 

many different 

environments. 

Support BigData storage 
(distributed file 
system, HDFS); 
BigData processing 
(Data Collector, 
YARN); 

In FINSEC dataflow, 
it is relevant for 
BigData processing 
(Data Collector), 
analytics and AI. 

In FINSEC dataflow, it 
is relevant for BigData 
processing (Data 
Collector), analytics 
and AI, Predictive 
Security. 

Data Collector: probes giving 

input data as a stream that 

needs to be processed as a 

batch once stored in the Data 

Tier. Analytics and AI. 

Data Collector: 

probes giving input 

data as a stream 

that needs to be 

processed 

Roadmap 

To be evaluated and integrated in future releases of FINSEC BIG DATA INFRASTRUCTURE depending on specific technical 
requirements from other tools 
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3. Analysis and Mapping of Requirements for Big Data Infrastructure 

3.1.  Mapping of requirements from FINSEC Reference Architecture 

The FINSEC Reference Architecture (RA) has been designed and detailed in Deliverable 2.4 which 
represents one of the main input source to define the functionalities, the structure and the 
technological solutions for the Big Data Infrastructure.  

The high-level architecture describes the logical view of the FINSEC Platform to support processes. It 
presents the different components required to manage the transformation and harmonisation of the 
valuable datasets from the respective data sources, to their semantic annotation and the metadata 
generation, to their exploration with dynamic queries and view creation on top of them. Furthermore 
it offers advanced analytics including state of the art big data focused algorithm execution and 
sophisticated processing, complemented by advanced visualizations of the analysis results. 

Additionally, the FINSEC Reference Architecture outlines all the key features of the logical view for 
FINSEC platform. In order to have a clearer overview of the drivers for Big Data Infrastructure from 
the RA, the logical view is depicted in the following diagram. 

 

Figure 3: FINSEC Data Tier Architecture 

The design of the FINSEC BIG DATA INFRASTRUCTURE was driven by the results of the thorough 

analysis of all the technical requirements that was conducted with the aim of addressing the goals and 

the expectations of the FINSEC BIG DATA INFRASTRUCTURE stakeholders. Moreover, the design of the 

FINSEC BIG DATA INFRASTRUCTURE high-level architecture facilitated the realisation of the designed 

workflows that enable the data-driven innovation in the FinTech domain as envisioned by the 

consortium. 

  

A key concept in the FINSEC project is the definition of a consistent Data Model outlined in Deliverable 
D2.3 and following in internal documents. See APPENDIX (REF FINSEC Reference Data Model). 

The whole FINSEC Platform can be conceived as an “intelligent engine” capable of transforming 
observed data from the physical and digital world (physical-cyber infrastructure) into Threat 
Intelligence. The information produced will be referred to as Cyber and Physical Threat Intelligence 
(CPTI). In the same way that Cyber Threat Intelligence (CTI) is valuable information exchanged in the 
Cyber Security Domain, the CPTI produced in the FinTech sector is the added-value information 
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produced by the platform which could be exchanged (in-out) between Financial Organizations and 
Security Organizations (CERT/CSIRT like).  

The FINSEC Platform can be considered a transformer of information that, at any step, correlates and 
aggregates more information along the way (from the data collection to presentation) using observed 
data and other information gathered from the asset model, the knowledge base using the machine 
learning analytics and prediction algorithms.  

A consistent Data Model is used to represent this information transformation. The FINSEC approach 
is based on existing standards suited to describe events and threats in either the Physical or the Cyber 
domain and to extend with the missing part. The FINSEC Data Model is built on objects that can be 
described with sequences of key-values in an endlessly extensible way. 

A consequence is that the data determine and shape the architecture as much as the functionality. 
The key-values maps naturally into a JSON representation and the JSON representation fits seamlessly 
into a NoSQL database technology.  

Therefore the technology solutions derive from the requirements, the functional specifications and 
the mapping on the Reference Architecture into the following schema: 

 
Table 3: Mapping of FINSEC requirements from RA 

Requirement Functional Specifications Mapping in Reference 
Architecture    

Technology solutions provided 
by Big Data Infrastructure 

Ingestion of Physical & Logical 
Incidents  

Import of Data from Physical 
and Logical Edge/Probes 

Data Collector into Security 
Database 

NoSQL DB (MongoDB) and 
Distributed File System 

Knowledge Base and 
Infrastructure Asset 

Import from external  KB 
and Asset Modeling 

Knowledge Base import 
Risk Assessment Engine 

NoSQL DB (MongoDB) and 
Distributed File System 

Incident and Threat Detection 
  

Real time Analytics Security Services and Tools NoSQL DB (MongoDB) and 
Distributed File System 
 

Predictive Security Machine learning on Big Data Predictive Analytics Query Engine (Elasticsearch) 
 and Distributed File System 

Presentation Present Data and Threats as 
user interface 

Dashboard Custom GUI  (KIBANA on top 
Elasticsearch) 

Collaboration Export of  Physical Logical 
Threat Intelligence 

Collaboration Tool Query Engine (Elasticsearch) 
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4. FINSEC BIG DATA INFRASTRUCTURE 
The following section will introduce the specific solutions for the FINSEC BIG DATA INFRASTRUCTURE, 
a service-oriented application implementing the concept of Data As A Service (DaaS), to provide 
support to other applications/microservices internal and external to the FINSEC Platform. The FINSEC 
BIG DATA INFRASTRUCTURE will be based on a set of technologies that meet the business and 
functional requirements of the project stated in the requirements tasks and analyzed before in the 
document. To this end, the FINSEC BIG DATA INFRASTRUCTURE supports a data-driven flow from data 
entry to visualization. The envisioned “core service stack” is depicted in Figure 4, which captures the 
key features of the FINSEC BIG DATA INFRASTRUCTURE. 

The FINSEC BIG DATA INFRASTRUCTURE is an efficient and optimised infrastructure management, 
including all aspects of management for the computing, storage and networking resources, as 
described before. 

The FINSEC BIG DATA INFRASTRUCTURE exploits the underlying core service of Data-driven 
Infrastructure Management System, to provide a service core for Data as a Service (see figure)  in a 
performant, efficient and scalable way. Data as a Service will incorporate a set of technologies 
addressing the complete data path: modelling and representation, cleaning, aggregation, and data 
processing (including seamless analytics, real-time and process mining). Distributed storage will be 
realised through a layer enabling data to be fragmented/stored according to different access patterns 
and allowing the efficient expression of that data for database storage and subsequent retrieval. 
Advanced modelling will be provided to enable the definition of flexible schemas for both data. These 
schemas will be then utilised by the introduced seamless data analytics framework, which analyses 
data in a holistic way across multiple data stores and locations, and operates on data irrespective of 
where and when it arrives at the platform. A cross-stream analytic engine will be provided that can be 
executed in distributed environments. The engine will consider the latencies across data centres, the 
locality of data sources and data sinks, and produce a partitioned topology that will maximise the 
performance. 

  

 
Figure 4: Core Services 

The core service for  Data Ingestion aims at openness and extensibility. The service will allow the 
ingestion of data objects and the definition of analytics, providing at the same time “hints” towards 
the infrastructure/cluster management system for the optimised management of these analytics tasks.  

Data 

Analytics 

Data-driven Infrastructure Management 

 

Data as a Service 

Data 

Ingestion 

Data  
Prediction 

Data 

Presentation 
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Furthermore, the service will allow probes and analytics engines to specify requirements and 
preferences both for the infrastructure management (e.g. application requirements) and for the data 
management (e.g. data quality goals, incremental analytics, information aggregation “levels”, etc.). 
  
The core service for Data Analytics service will provide a framework allowing for flexible modelling of 
process analytics to enable their execution. Functionality-based process modelling will then be 
concretised to technical-level process mining analytics, while a feedback loop will be implemented 
towards overall process optimisation and adaptation. 
  
The core service for Data Prediction aims at enabling the applications of predicting algorithms with 
the required data services, their interdependencies with the application micro-services and the 
necessary underlying resources. 
 
Finally, the core service for Data Presentation, going beyond the visualization of data and analytics, 
outcomes to adaptable visualisations in an automated way, according to application analysis and data 
semantics. Visualizations will cover a wide range of aspects (interlinked if required) besides data 
analytics, such as computing, storage and networking infrastructure data, data sources information, 
and data operations outcomes (e.g. cleaning outcomes, aggregation outcomes, etc.). Moreover, the 
FINSEC BIG DATA INFRASTRUCTURE visualisations will be incremental, thus providing data analytics 
results as they are produced. 

4.1. Operation of the FINSEC BIG DATA INFRASTRUCTURE   

 
The envisioned operation of FINSEC BIG DATA INFRASTRUCTURE is reflected in five main phases as 
depicted in Figure 5 (and further detailed in the following sub-sections): Entry, Modelling, Analytics 
and Prediction and Presentation. 

 
Figure 5: Phases for BigData infrastructure 
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Big Data  
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4.1.1.  Entry Phase 

During the entry phase, PROBES ingest their data through a DATA COLLECTOR.  
Thus, the Entry Phase consists of three discrete steps: 
 

● Probes ingest their data in the FINSEC BIG DATA INFRASTRUCTURE-supported data stores 
through a unified API. They can directly choose if they want to store (non-) relational data or 
use the FINSEC BIG DATA INFRASTRUCTURE’s object storage services. Moreover, historical 
data can periodically move from the operational database to object storage, keeping only 
recent data on the database and providing a backup mechanism. Streaming data can also be 
processed, leveraging the FINSEC BIG DATA INFRASTRUCTURE implementation. 

● Given the stored data, Analytics can design processes utilising the intuitive graphical user 
interface provided by the Process Modelling framework, and the available list of “generic” 
processes (e.g. customer segmentation process). Overall they compile a business workflow, 
ready to be mapped to concrete tasks that will be executed. This mapping is performed by a 
mechanism incorporated in the Process Modelling framework, which is called Process 
Mapping. 

● Based on the outcomes of process, the data services (which constitute the corresponding 
business workflow) are made available to the analytics through the API. The analytics modules 
can specify preferences for specific data, for example, how a data service should treat missing 
values or ingest a complete algorithm in the case this has not been mapped (and as a result 
made available) by the Process Mapping mechanism. 

● The output of the Entry Phase is a set of documents (that includes all relevant information for 
the application graph with concrete “executable” services) that is passed to the analytics 
engine in order to identify the resource needs for the services and as a result for the overall 
application. 

4.1.2.  Modelling Phase 

During the modelling phase, Risk Assessment Engines create their models and stores them into the 
FINSEC BIG DATA INFRASTRUCTURE. The business processes and the assets will be design by utilising 
the functionalities of the Process Modelling framework in order to describe the overall business 
workflows, while analytics can specify their preferences and pose their constraints through the Data 
service interface.  

4.1.3.  Analytics Phase 

The analytic phase of FINSEC BIG DATA INFRASTRUCTURE aims at optimizing the provision of data 
services and data-intensive applications by understanding not only their data-related requirements 
(e.g. related data sources, storage needs, etc.) but also the data services requirements across the data 
path (e.g. the resources needed for effective data representation, aggregation, etc.) and the 
interdependencies between application components and data services (both included as processes 
through the process modelling approach described in the previous paragraph). In this context, 
dimensioning includes a two-step approach that is realised through the FINSEC BIG DATA 
INFRASTRUCTURE: 
 

● In the first step, the input from the Data Collection is used to support the composite 
application (consisting of a set of micro-services) needs with relation to the required data 
services. 

● The second step is to support these identified/required data services, as well as all the 
application components, regarding their infrastructure resource needs.  
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4.1.4.  Prediction Phase 

The prediction of FINSEC BIG DATA INFRASTRUCTURE aims at orchestrating the optimum deployment 
patterns and practices for both data services and applications. The need for such optimisation 
emerges from the fact that all services to be deployed have interdependencies that need to be 
considered, to obtain a practical deployment, as well as to account for the user’s preferences (e.g. 
minimisation of cost).  

To this end, the deployment approach of FINSEC BIG DATA INFRASTRUCTURE includes a two-step 
phase and is realised through the mechanism of the FINSEC BIG DATA INFRASTRUCTURE management 
system: 

● Deployment receives the dimensioning information for components and decides on the 
overall optimum deployment pattern through a ranking mechanism. 

● Following the identification and analysis of the interrelations and the impact of the 
components, in terms of computation, storage and networking resources (considering data 
characteristics such as volumes, application components and data services I/O rates, legal 
constraints, etc.), optimum deployment patterns will be compiled.  

4.1.5.  Presentation Phase 

The presentation service of FINSEC BIG DATA INFRASTRUCTURE is realised through different 
components (Dashboard, Collaboration Modules) and aims at the visualization and transport of the 
complete data resources, in an optimised way for data-intensive applications.  
 

4.2.  FINSEC Big Data Infrastructure Architecture  

According to D2.4, the Data Tier is the logical layer where information are stored and is organized into 
different storage infrastructures, providing consisting data access API to all other modules. Quoting 
D2.4 

The Data Tier provides an infrastructure to serve data that follow in the FINSEC REFERENCE 
DATA MODEL (defined by the project in tasks T2.3 and T2.4). It provides access in read/write 
via a Data Access API, exposed by an ad-hoc service of the platform (Data Manager). This 
module exposes convenient data access and manipulation functions to clients, is responsible 
for ensuring validation of input data against the data model and abstracts away the actual 
underlying DB engine(s), which can be changed without affecting upper-level services. 

As depicted in the Figure 3, the FINSEC BIG DATA INFRASTRUCTURE will provide a complete 
infrastructure big data management system accomplished by a seamless and consistent API 
interface. 

The Data Tier will be used as a service from other applications both external and internal to the FINSEC 
Platform, outlined in D2.3. In this respect it should be considered as a Security Data as a Service and 
could also be a general module used in other contest. Therefore it is designed with generality by 
design. 

Conceptually, data flows into the data tier from the external world, coming from probes and other 
applications/microservices (e.g. the import module of a compatible Knowledge Base of Cyber Threat 
Information). These modules produces Security Data that will be consumed from other modules in the 
platform, for further elaboration. However the complex nature of the data, the potentially large  
quantities to be stored and the need to process the data for analytics, predictions and visualization 
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requires into the data tier the presence of a specialized search engine that scales on a big data 
infrastructure. 

The FINSEC BIG DATA INFRASTRUCTURE is designed, in the following, as a modular architecture 
composed of multiple key components, where each component was designed with a clear business 
context, scope and set of functionalities. As the project matured after the initial version of the high-
level architecture, additional functionalities were designed and introduced in the platform. Moreover, 
as a result of the comprehensive analysis of the feedback received by the end-users of the platform 
from the released versions of the platform, a series of adjustments and refinements were introduced 
in the components of the platform in order to better address the identified requirements, but also to 
facilitate the implementation of the functionalities of the platform. 
 

The following picture depicts the illustrated scenario. 

 

Figure 6: FINSEC BigData Architecture 

The depicted FINSEC BIG DATA INFRASTRUCTURE high-level architecture, incorporates all the 

adjustments and refinements that were introduced in the course of development of the FINSEC BIG 

DATA INFRASTRUCTURE platform. This architecture will drive the implementation and the release of 

the FINSEC BIG DATA INFRASTRUCTURE Minimal Viable Platform (MVP). 

 

In the MVP, all probes will feed the Data Collector which in turn will use the ingestion/create methods 

of the FINSEC BIG DATA INFRASTRUCTURE Security Database. 

4.3.  Building Block Structure and Functionalities 

4.3.1. Security Database (MONGODB) 

The FINSEC BIG DATA INFRASTRUCTURE provides a NoSQL database to store data coming from the 
field via the probes and Data Collector. The actual choice according to the analysis presented in the 
previous sections is to use a NoSQL database such as MongoDB. 
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Moreover MongoDB also offers GridFS specification for storing and retrieving large files that exceed 
the BSON-document size limit of 16MB.  
 
In MongoDB, databases hold collections of documents. Data is stored in these documents in a binary 
representation known as Binary JSON (BSON). Every document has a unique key, “id”, in a collection.  
Collections in MongoDB have Dynamic schemas. Thus, a different “shapes” of documents can be 
stored within a single collection.  
 
GridFS stores large binary files by dividing the files into smaller files called “chunks” and saving each 
of them as a separate document. GridFS limits a default chunk size to 255 kB, thus enabling efficient 
file handling operations regardless of the file size.  
 
As shown in the Figure 7, GridFS uses two collections to save a file to a database: fs.chunks and fs.files . 
The first one contains the binary file divided into 255kB chunks while the other collection contains the 
metadata for the document.  
 

 

 

Figure 7: GridFS structure 

There are several reasons that might lead an organization to the decision of storing the binary data 
in the same system as the metadata instead of storing it in a separate repository. These include: 
 

● The resulting application will have a simpler architecture: one system for all types of data; 
● Document metadata can be expressed using the rich flexible document structure, and 

documents can be retrieved using all the flexibility of MongoDB’s query language; 
● MongoDB’s high availability (replica sets) and scalability (sharding) infrastructure can be 

leveraged for binary data as well as the structured data; 
● One consistent security model for authenticating and authorizing access to the metadata 

and files; 
● GridFS doesn’t have the limitations of some file systems, like number of documents per 
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directory, or file naming rules. 
 
Using MongoDB GridFS as a solution for handling unstructured data is a better option because data 
is stored inside the database, which is highly scalable and designed for horizontal partitioning. 
Another reason in favor of using MongoDB GridFS as a solution to this problem is that horizontal 
partitioning combined with replication capabilities enables use of simultaneous reading of data from 
several database servers that serve as replication servers. The simultaneous reading capability 
greatly increases throughput performance of the system. 

4.3.2. Security DB API 

The Security DB of the FINSEC BIG DATA INFRASTRUCTURE will supports four basic operations, Create, 
Read, Update and Delete (CRUD). These operations can be used for inserting and retrieving data 
formatted according to the FINSEC Data Model (FINSTIX see appendix). 
The Security DB will be implemented in MongoDB and the rest of example will use the API Compass. 
The rest of this section, presents an overview on these operations. 
 

1) Create Operation 
In FINSEC BIG DATA INFRASTRUCTURE will, insert operations target a single collection. All write 
operations are atomic on the level of a single document.  

FINSEC BIG DATA INFRASTRUCTURE will provide two methods to insert a document into a collection:  

db.finstix.insertOne()  # Inserts one document 

db.finstix.insertMany() # Inserts multiple documents 

Example:  
db.finstix.insertOne( // Collection 

{     // FINSTIX Document 

 "type": "x-finstix", 

 "id": "x-finstix--998fcca5-06c7-4c5d-98d7-3c966599fc94", 

 "created": "2019-02-06T18:13:36.140Z", 

 "modified": "2019-02-06T18:13:36.140Z", 

 "subtype": "Physical", 

 "description": "Attack to Person", 

 "parameter": "Confidentiality 50%", 

 "narrative": "attack with knife and gun", 

 "priority": "7", 

 "organization": "Wirecard", 

 "asset": "ATM #6789", 

  "position": "45.490946+9.228516", 

 "probe": "FUJITSU CCTV" 

} 

) 

2) Read Operation 
Read operations retrieve documents from collections.  

 

To query a collection for documents, FINSEC BIG DATA INFRASTRUCTURE will provide basic methods 
to query/find an object into a collection:  

db.finstix.find(query, projection)  

Where query specifies the criteria of the documents to return, and projection specifies the fields to 
return in the documents that match the query criteria. 
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Example: 
db.finstix.find( // find finstix object in Collection 

{created: $gt: 2018-01-01},  // query criteria 

 asset: ,  

 address: 1}  

).limit(5) 

 
The query uses $gt to return,events created after a certain date and uses the method limit(5) to set 
the maximum number of returned documents to 5. 

 
3) Update Operation   
Update operations modify existing documents in a collection. FINSEC BIG DATA INFRASTRUCTURE will 
provides the following methods to update documents of a collection: 

 
db.finstix.updateOne()  # Modifies one document 

db.finstix.updateMany() # Modifies multiple documents 

db.finstix.replaceOne() # Replaces one document 

 

 
4) Delete  Operation   

 

Delete operations remove documents from a collection. FINSEC BIG DATA INFRASTRUCTURE will 
provides the following methods to delete documents of a collection : 

db.finstix.deleteOne() Deletes one document 

db.finstix.deleteMany() Deletes multiple documents 

 
 

Scalable Infrastructure 
 
In order to meet the needs of applications with large data sets and high throughput requirements, the 
FINSEC BIG DATA INFRASTRUCTURE implemented with MongoDB, provides horizontal scale-out for 
databases using a technique called sharding. Sharding allows MongoDB deployments to scale beyond 
the limitations of a single server and it does this without adding complexity to the application. It 
automatically divides and distributes data across multiple servers or shards. Each shard is backed by a 
replica set to provide always-on availability and workload isolation. To respond to workload demand, 
nodes can be added or removed from the cluster in real time, and MongoDB will automatically 
rebalance the data accordingly, without manual intervention. MongoDB supports sharding through 
the configuration of a sharded cluster, which is composed of three major components: Shards, Query 
routers and Configuration servers.  
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Figure 8: Automatic sharding for horizontal scale-out 

In the sharded cluster, each shard contains a subset of the sharded data and can be deployed as a 
replica set. The query router directs requests from the application to the appropriate shard and also 
returns the result back to the client. These are “mongos” instances and there can be more than one 
in a cluster. Multiple mongos instances reduce the request load from client. The third component in 
a sharded cluster is the configuration servers. They have metadata about all the shards and hence, 
help the query router to direct different operations to specific shards. Figure 9 shows an overview of 
a sharded cluster in MongoDB.  

 

 
Figure 9: A sharded cluster in MongoDB 

 
Sharding in MongoDB is on collection level. Data of a collection is partitioned by a shard key. Shard 
keys are indexed fields existing in every document in the collection. Shard key values are divided into 
groups, also known as chunks and distributed evenly across the shards. MongoDB offers multiple 
sharding policies that enable developers and administrators to distribute data across a cluster 
according to query patterns or data locality. As a result, MongoDB delivers much higher scalability 
across a diverse set of workloads: 
 

▪ Ranged Sharding. Documents are partitioned across shards according to the shard key value. 
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Documents with shard key values close to one another are likely to be co-located on the 
same shard. This approach is well suited for applications that need to optimize range based 

queries, such as co-locating data for all customers in a specific region on a specific shard.   

▪ Hashed Sharding. Documents are distributed according to an MD5 hash of the shard key 
value. This approach guarantees a uniform distribution of writes across shards, which is 

often optimal for ingesting streams of time-series and event data.   

▪ Zoned Sharding. allows precise control over where data is physically stored in a cluster. This 
allows developers to accommodate a range of application needs. For instance, controlling 
data placement by geographic region for latency and governance requirements, or by 

hardware configuration and application feature to meet a specific class of service.   

4.3.3. ANALYTICS SEARCH ENGINE 

 

The FINSEC BIG DATA INFRASTRUCTURE provides an analytic search engine to work on stored data 
coming from probes and the Security Database. The actual choice according to the analysis presented 
in the previous sections is Elasticsearch. Thus, Elasticsearch complements the NoSQL database 
(MongoDB) as a search engine to allow scalable and near real-time search on the data. The advantages 
of such a solution is the ability to reliably store documents and perform simple full-text search queries 
in MongoDB along with the extensive functionalities, customizability and speed for performing 
complex full-text search queries in Elasticsearch. 
  
Elasticsearch was initially developed as a system for full text search in large volumes of unstructured 
data. At present, Elasticsearch is a full-fledged analytical system with various capabilities. Its main 
strengths are exceptional and reliable speed, very high customizability and outstanding flexibility. 
  
In order to accomplish sophisticated searches, Elasticsearch provides the two key features Query and 
Filter. There exist multiple types of queries, the most important being Full-text, Term, Match, and 
Prefix. The Geo filter is also one of most important features of Elasticsearch. Since Elasticsearch is built 
on top of Lucene, Elasticsearch makes use of all features provided by Lucene and extends them by 
providing additional features. The Query Domain Specific Language (Query DSL) can be used in order 
to support the creation of advanced queries of Elasticsearch. Elasticsearch uses the Inverted index 
structure for allowing fast full-text searches. 
  
The search in Elasticsearch is near real-time. This means that although documents are indexed 
immediately after they are successfully added to an index, they do not appear in the search results 
until the index is refreshed. Elasticsearch does not refresh the indices after each update. Instead it 
makes the use of a specified time interval, also called refresh interval, to perform this operation. By 
default, the refresh interval is one second. Since refreshing is costly in terms of disk I/O, it can affect 
the indexing performance. For that reason, increasing the refresh interval before updating a large 
number of documents is useful. Elasticsearch provides a Search API supports GET and POST methods 
and enables to search across multiple indices. However, more complex searches can be accomplished 
by using the Query DSL which allows for using Queries and Filters. 
  
In the context of data analysis, Elasticsearch is used together with other components such as Logstash 
and Kibana, and plays the role of data indexing and storage. 
  
Scalability of the search Engine: 
  



Project Number:  786727 - FINSEC D5.1 Report on Integrated Big Data Infrastructure - I 
  

 

FINSEC | FINSEC BIG DATA INFRASTRUCTURE 31 

 

As Elasticsearch has a distributed architecture it enables to scale up to thousands of servers and 
accommodate petabytes of data. It provides the ability to subdivide the index into multiple pieces 
called shards, and its structure is optimized for fast and efficient full-text searching.  Shards come in 
two types, master and replica. The master shard allows both read and write operations, while the 
replica is read only, and is an exact copy of the master. Such a structure ensures the stability of the 
system, since in the event of a master failure, the replica becomes a master. 
  
The advantage of sharding feature is that it allows horizontal scaling of the content volume and 
improves the performance of Elasticsearch by providing parallel operations across various shards that 
are distributed on nodes. Each primary and replica shard is built of multiple segments. Elasticsearch 
makes the use of segment merging for reducing the number of segments in order to allow faster 
searching and for reducing the size of the index because of removing deleted documents when the 
merge is finalized. Figure 10 illustrates an example of an Elasticsearch cluster. The cluster consists of 
two nodes with four primary shards and four replica shards. As shown in the figure, replica shards 
reside on different nodes than the primary shards in order to help in case of primary shard failure and 
for reasons of load balancing of incoming requests (i.e., Replica shard 1, which belongs to the Primary 
shard 1, resides on Node 2, whereas the primary resides on Node 1). 
  

 
Figure 10: Example of an Elasticsearch cluster 

4.3.4. Synchronization with Mongodb 

There are different ways to synchronize data from MongoDB to Elasticsearch (e.g., Logstash, 
Mongoosastic, Transporter, Monstache, etc ) but one easy option is to use Mongo-Connector. 

Mongo-Connector is a generic connection system that can be used for connecting MongoDB to search 
engines such as Solr or Elasticsearch for more advanced search. It copies the documents stored in 
MongoDB to the target system. Afterwards, it constantly performs updates on the target system to 
keep MongoDB and the target synchronized. The connector supports both Sharded Clusters and 
standalone Replica Sets, hiding the internal complexities such as rollbacks and chunk migrations. 

Figure 11 illustrates how data can be synchronized using mongo-connector, which requires mongoDB 
to run in replica-set mode. It synchronizes data in mongoDB to the target then tails the mongoDB 
oplog, keeping up with operations in mongoDB in real-time. A package named 
“elastic2_doc_manager” is also required in order to write data to Elasticsearch. 

From version 2.0, mongo-connector can also replicate files stored in GridFS to Elasticsearch using the 
attachment mapping type. 
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Figure 11: data synchronization through mongo-connector 

4.3.5. ELASTICSEARCH BASIC OPERATIONS 

The usage of the RESTful API is quite simple: it expects JSON encoded parameters, and can be accessed 
using HTTP. The returned results are also encoded in JSON. The RESTful API supports requests in order 
to manage the index, check the server health, update the node, search data, and manage the cluster. 
Since REST is built upon HTTP protocol, it supports all methods of HTTP like GET, PUT, POST, DELETE, 
and so on. By default, Elasticsearch does not provide any authentication or authorization method to 
its REST API. However, the chargeable Elasticsearch plugin Shield provides functionalities for 
encrypting communications and a role-based access control. The REST API provides the speeding up 
of atomic operations with the Bulk API. It allows to make multiple create, read, update, and delete 
requests of documents at once. The rest of this section, presents an overview on basic CRUD APIs. 

 Index API 

The index API adds or updates a typed JSON document in a specific index, making it searchable. The 
following example inserts the JSON document into the "finstix" index, under a type called " x-finstix " 
with an id of "x-finstix—998fcca5-06c7-4c5d-98d7-3c966599fc94" : 

PUT finstix/x-finstix/x-finstix—998fcca5-06c7-4c5d-98d7-3c966599fc94 

{   "created": "2019-02-06T18:13:36.140Z", 

    "modified": "2019-02-06T18:13:36.140Z", 

    "subtype": "Physical", 

    "description": "Attack to Person", 

    "parameter": "Confidentiality 50%", 

    "narrative": "attack with knife and gun", 

    "priority": "7", 

    "organization": "Wirecard", 

    "asset": "ATM #6789", 

    "position": "45.490946+9.228516", 

    "probe": "FUJITSU CCTV" 

} 

Get API 

The get API allows to get a typed JSON document from the index based on its id. The following example 
gets a JSON document from an index called finstix, under a type called x-finstix, with id valued x-
finstix—998fcca5-06c7-4c5d-98d7-3c966599fc94: 

GET finstix/x-finstix/x-finstix—998fcca5-06c7-4c5d-98d7-3c966599fc94 

Delete API 

The delete API allows to delete a typed JSON document from a specific index based on its id. The 
following example deletes the JSON document from an index called finstix, under a type called x-
finstix, with id x-finstix—998fcca5-06c7-4c5d-98d7-3c966599fc94: 
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DELETE /finstix/x-finstix/x-finstix—998fcca5-06c7-4c5d-98d7-3c966599fc94 

Update API 

The update API allows to update a document based on a script provided. The operation gets the 
document from the index, runs the script, and indexes back the result. The following example add a 
new field to the document: 

POST finstix/x-finstix/x-finstix—998fcca5-06c7-4c5d-98d7-3c966599fc94/_update 

{ 

    "script" : "ctx._source.new_field = 'value_of_new_field'" 

} 

 

Queries and Filters 

 Elasticsearch provides a REST API and clients for several programming languages that support a 
flexible query language named ‘Query DSL’. Although, it is denoted as a ”Query” DSL, it also contains 
a ”Filter” DSL. A search can be performed in two ways: in a form of a query or in a form of a filter. The 
main difference between them is that a query calculates a relevance score of the returned documents 
whereas the filter does not. Due to this, and the fact that filter can be cached, searching via filters is 
faster than via queries. A filter asks a yes/no question of every documents, whereas the query also 
asks the question: ’How well does this document match?’ In Elasticsearch, there are different types of 
queries, like basic queries, compound queries, full-text search queries, and pattern queries, to name 
a few. Basic queries allow for searching for a part of the index. Furthermore, they allow for nesting 
other queries inside the basic query. Compound queries allow combining multiple queries or filters 
inside them. Full-text search queries support full-text searching, analyzing their content and providing 
Lucene query syntax. Last but not least, pattern queries support various wildcards in queries. Basic 
queries include e.g., term, match, and indices queries. The match query can be also categorized to the 
group of full-text search queries. This also applies to the prefix query that can be included to the group 
of pattern queries. 

Below is an example of query clauses being used in query and filter context in the search API. This 
query will match documents where all of the following conditions are met: 

The description field contains the word attack. 

The narrative field contains the word gun. 

The subtype field contains the exact word Physical. 

The created field contains a date from 06 Feb 2019 onwards. 

 

GET /_search 

{ 

  "query": { 

 "bool": { 

   "must": [ 

        { "match": { "description":   "attack"     }}, 

     { "match": { "narrative": "gun" }}  

   ], 

   "filter": [ 
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        { "term":  { "subtype": "Physical" }}, 

        { "range": { "created": { "gte": "2019-02-06" }}} 

   ] 

 } 

  } 

} 
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4.5. FINSEC BIG DATA INFRASTRUCTURE TECHNICAL INTERFACE 

As an example, the following table give the technical specification of the RestAPI interface to the  Entry 
module into the  FINSEC Big Data INFRASTRUCTURE. 

Table 4: Create DB interface 

Technical Interface 

Reference Code DB01#01 

Function Upload the dataset  

Subsystems MongoDB- DATABASE  

Type, State RESTful-API 

Endpoint URI  <server url:9009>/ingest/ 

Input Data FINSTIX JSON format 

Output Data 200 OK - NOT OK 

 

Table 5: Create DB interface 

Technical Interface 

Reference Code DB01#02 

Function Upload the dataset  

Subsystems MongoDB- DATABASE  

Type, State RESTful-API 

Endpoint URI  <server url:9009>/ingestmulti/ 

Input Data FINSTIX JSON format 

Output Data 200 OK - NOT OK 

 

Table 6: Create DB interface 

Technical Interface 

Reference Code DB01#03 

Function Upload the dataset  

Subsystems MongoDB- DATABASE  

Type, State RESTful-API 

Endpoint URI  <server url:9009>/find/ 

Input Data FINSTIX JSON format 

Output Data 200 OK - NOT OK 
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5. Implementation and Integration Aspects 

5.1. Deployment Infrastructure 

FINSEC will support the deployment of the Big Data Infrastructure components as part of the FINSEC 
Core, which will be available as a Kubernetes application that can be installed both on-premises and 
in the cloud. 

Kubernetes is the leading open source container orchestration platform and allows to leverage all the 
advantages of a modern container-based solution, including ease of distribution via prepackaged 
Docker images, automated deployment of complex systems using manifests and simple horizontal 
scalability. Furthermore, using Kubernetes as the deployment platform allows to abstract from the 
actual underlying infrastructure, which may be virtual or physical, on-premises or cloud-based. Most 
public cloud providers offer managed Kubernetes clusters, including Amazon EKS, Azure AKS, Google 
GKE and DigitalOcean Kubernetes. These allow to provision a ready-to-use Kubernetes cluster with no 
configuration effort. On-premises Kubernetes solutions include the community-supported open 
source version, which can be installed with tools such as kubeadm or Kubespray, and commercially 
supported distributions, such as Red Hat OpenShift Container Platform. 

Two important requirements for Big Data solutions are scalability and storage. Horizontal scalability is 
easy to achieve in a container cluster, since the number of desired instances for each container can 
be changed dynamically with API commands or even auto-scaling rules, e.g. based on CPU utilization. 
Regarding storage, while early versions of container platforms did not have good support for 
persistent storage, recent versions of Kubernetes can use a wide range of storage plugins for 
persistent volumes, from traditional Fibre Channel LUNs and iSCSI, to distributed storage such as 
GlusterFS and block storage from the main cloud providers. Several NoSQL and Big Data components, 
including MongoDB and Elasticsearch, publish official ready-to-use Docker images, which make it easy 
to deploy them on a container cluster. 

Regarding hosting in the cloud or on-premises, FINSEC will support both scenarios, as shown in Figure 
12. The integrated development and testing environment will be hosted on the Digital Ocean public 
cloud, leveraging their managed Kubernetes offering. This will allow flexibility in allocating resources 
on an as-needed basis and avoid concerns about physical infrastructure provisioning and 
management. On the other hand, pilots will have the option to choose between a cloud plus edge 
deployment or a fully on-premises deployment. In the first scenario, the FINSEC Core for the pilot will 
be deployed in a dedicated environment in the Digital Ocean cloud, with only probes running in the 
edge, i.e. the pilot organization data center. This will benefit from fully delegating the deployment of 
the FINSEC Core to the FINSEC DevOps tools, thanks to tight integration on the same cloud platform. 
In the second scenario, all FINSEC components will be hosted on the pilot organization own 
infrastructure. This will still benefit from the automated deployment using Kubernetes manifests, but 
it will require setting up a local Kubernetes cluster (if not already available) and possibly tuning the 
deployment configuration to adapt to the local infrastructure, such as using proper drivers for 
persistent storage. 
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Figure 12: Deployment scenarios 

5.2. FINSEC technologies to be integrated with the BigData Infrastructure 

 The integration includes a seven-step process:  

● Based on the deployment phase, outcomes regarding the optimised deployment pattern, 
computing resources are reserved and allocated. 
 

● According to the allocated computing resources, storage resources are also reserved and 
allocated. It should be noted that storage resources are distributed. 
 

● Data-driven networking functions are compiled and deployed to facilitate the diverse 
networking needs between different computing and storage resources. 
 

● The application components and data services are deployed and orchestrated based on 
“combined” data and application-aware deployment patterns. An envisioned orchestrator 
mechanism will compile the corresponding orchestration rules according to the deployment 
patterns and the reserved computing, storage and network resources. 
 

● Data analytics tasks will be distributed across the different data stores to perform the 
corresponding analytics, while orchestration of application components and data services is 
also performed. 
 

● Monitoring data is collected and evaluated for the resources (computing, storage and 
network), application components and data services and functions (e.g. query execution 
status). 
 

● Runtime adaptations take place for all elements of the environment including resource re-
allocation, storage and analytics re-distribution, re-compilation of network functions and 
deployment patterns.  
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5.2.1. Anomaly Detection 

Anomaly detection is a family of analytics techniques that learn typical properties of the system and 
reports significant deviations from the typical system’s properties as outliers. Anomaly detection is 
frequently used in the state-of-the-art Intrusion Detection Systems (IDSs) because it provides a 
protection of the system from new zero-day attacks whenever these attacks deviate from typical 
behaviors of the system. Another advantage of Anomaly detection techniques is that they don’t 
require a balanced training set in which both malicious and benign events are equally represented. 
These techniques are a better fit for real industrial system where malicious events are much more rare 
than benign events. 

There is a wide range of Anomaly Detection techniques including statistical methods, clustering 
methods, time series analysis and recent techniques based on deep neural network. In FINSEC we will 
deploy a number scalable adaptive Anomaly Detection analytics as a cloud service. The architecture 
of Anomaly Detection component is depicted below. 

 

Figure 13: Anomaly Detection component architecture 

For scalability we will use an Apache Spark platform which is the most recent state-of-the-art of map-
reduce platform with a rich set of machine learning libraries optimized for Big Data setups. The 
development will be python based to allow to leverage and evaluate publicly available state-of-the-
art machine learning techniques as part of in the rich python eco-system. The data will be periodically 
read from ElasticSearch or other data sources according to received data triggers and processed both 
for training and analysis in Spark. The trained models will be stored in a persistent storage e.g., HDFS.  
The output of anomaly detector will be the reports of the detected outliers or adaptive data requests. 
The data triggers and output of anomaly detector will be distributed using Kafka protocol.  

For adaptivity we will use a number of techniques, including online training techniques. For these 
methods the models are adaptively updated for new system inputs. A simple example of such a 
technique is the exponential smoothing average which enables continuous updates of mean values 
and the corresponding standard deviation values of system features. A more advanced example will 
be estimation of conditional density of next observation of a signal given a previous time window 
either by directly estimating some signal statistics or by applying LSTM deep learning techniques. 

Another example of an adaptive algorithm is an alert budgeting system. An alert budgeting system 
aims to adaptively set thresholds above which alerts are generated. Alert budgeting systems will 
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automatically adapt the thresholds according to the recent system behavior to make sure that in 
average the security officer doesn't need to handle more than a predefined amount of alerts. This 
method adapts to the nature of the data and has the added benefit of allowing the security officer to 
configure an 'easy to grasp' parameter like "The amount of alerts that can be handled by a human 
operator during a day" and not an obscure threshold level number. 

FINSEC Anomaly detection analytics will be tuned, trained and validated using data provided by FINSEC 
partners. Anomaly detection component will report detected outliers along with an anomaly score 
and an additional contextual info of the triggered outlier. 

 

 

6. Conclusions 
The present document has provided the report of the activities done so far within Task 5.1 on the 
definition and design of FINSEC BIG DATA INFRASTRUCTURE. An overview of the technological state 
of the art was given at the beginning of the deliverable, with the comparison between NoSQL and 
NewSQL solutions. According to the need of scalability, a NoSQl solution is identified as the best one. 
MongoDB is the most suitable technology among the analysed ones, and it will be supported by 
analytics engine Elasticsearch, supporting queries for data search within the database on JSON-based 
data, as foreseen by the proposed FINSTIX data model. 

The BigData infrastructure is thought in a Data as a Service perspective, where a set of technologies 
are integrated together to address the complete data path: modelling and representation, cleaning, 
aggregation, and data processing, and then the operation of FINSEC BIG DATA INFRASTRUCTURE is 
reflected in four main phases, namely Entry, Modeling, Analytics and Prediction and Presentation. 

The infrastructure is a modular architecture, whose deployment and integration will be based on the  
Kubernetes technology, which is able to support storage functionalities as well. 

The following activities within Task 5.1 will be focused on the consolidation of the proposed design 
and on the implementation, integration and deployment of the FINSEC BIG DATA INFRASTRUCTURE. 
Deliverable 5.2 (to be submitted in M18) will represent the final report for this task on the results of 
the infrastructure implementation. 
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ANNEX A - FINSTIX Data Model 

FINSTIX BASIC CONCEPTS 

1. The FINSEC Data Model is an extension of STIX2  
2. It will be called FINSTIX 
3. FINSTIX extends STIX2 into the physical and logical domain  
4. FINSTIX Data Model basic object is a sequence of key-values that can be passed as JSON 
5. FINSTIX Data Model general object is an aggregate of more objects and relations still expressed in JSON 
6. FINSTIX will be also specific including information relevant to the financial sector 
7. FINSTIX defines other objects and relations to STIX2 to cope with the correlation of  physical and logical data 
8. Probes generate Observed Data, Events, Incidents, Logs (observed data) according to the FINSTIX Data Model 
9. Data Collectors (DC) have the function to gather data from probes normalizing, sanitizing, prioritizing and storing CPTI into the Data Layer. In other 

words, a DC knows the syntax-semantic and add or subtract further information to the FINSTIX objects passing through. 
10. FINSTIX objects coming from Data Collector are stored into the DATA LAYER of the FINSEC platform.   
11. Asset Model (AM) and Knowledge Base (KB) are represented with FINSTIX objects as well. 
12. The Analytics/Predictive algorithms use events, observed data, the Knowledge base and Asset Models to produce Cyber Physical Threat Intelligence  

(CPTI vs CTI). 
 

 

Table 7: FINSTIX objects 

Source Type Description with difference with STIX Key-Value (JSON like) 

ALL GENERIC The generic object.   
 
All objects MUST have the basic properties described on the 
right. 

{    
 "type": "object type", 
"id": "typexxx--8e2e2d2b-17d4-4cbf-938f-98ee46b3cd3f", 
 "created": "e.g. 2019-02-06T20:03:00.000Z", 
 "modified": "e.g 2019-02-08T18:13:36.140Z", 
 "subtype": "Physical or Logical or both", 
 "name": "name of object", 
 "description": "short description" 
 "parameter": "", 
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 "narrative": "long description ", 
 "priority": "1-10",  
 "organization": "Company name", 
 "asset": "asset name", 
 "position": "polar coordinates", 
 "probe": "Probe name" 
} 
 

PROBE Observed Data  Conveys information observed on infrastructure both logical 
and physical assets. 
 
Typically used to contain: 

● Log 
● Events  
● Incidents 

for both logical and physical assets. 

In FINSTIX, and in our specific case and situation, one can 
manipulate and modify the three attributes “first_observed”, 
“last_observed” and “number_observed” to enlarge the 
collected data volume when necessary allowing more accuracy 
when processing the data. 

{ 
 "type": "object type", 
 "id": "typexxx--uuid", 
 "created": "2018-04-06T20:03:00.000Z", 
 "modified": "2019-02-06T18:13:36.140Z", 
 "subtype": "Physical or Logical or both", 
 "name": "Probe name", 
 "description": "Lorem Ipsum" 
 "parameter": "", 
 "narrative": "attack with knife and gun", 
 "priority": "7", 
 "organization": "organization--uuid", 
 "asset": "asset--uuid", 
 "position": "45.490946+9.228516", 
 "probe": "FUJITSU CCTV" 
 “first_observed”: “1”, 
 “last_observed”: “2”,  
 “number_observed” : “123”, 
} 

PROBE Probe  A new object to describe probe { 
 “probe”: “log-probe-123456”, 
 “asset”: “assetname”, 
} 

PROBE Probe 
Configuration 

A new object to contain specific configuration of probe { 
  TBD 
} 

PROBE Indicator Contains a pattern that can be used to detect suspicious or 
malicious cyber or physical activity. 

{ 
  TBD 
} 

PROBE Intrusion Set A grouped set of adversarial behaviors and resources with 
common properties believed to be orchestrated by a single 
threat actor. 
 

{ 
 "type": "intrusion-set", 
 "id": "intrusion-set--uuid", 
 "created_by_ref": "identity--uuid", 
 "created": "2016-04-06T20:03:48.000Z", 
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Attack Resource Level is an open vocabulary that captures the 
general level of resources that a threat actor, intrusion set, or 
campaign might have access to.  
 
It ranges from individual, club, contest, team, organization, to 
government. 
The Attack Motivation open vocabulary describes the Threat 
Actor or Intrusion Set's motivation. It ranges from “accidental”, 
“coercion”, “dominance”, “ideology”, “notoriety”, 
“organizational-gain”, “personal-gain”, “personal-satisfaction”, 
“revenge”, to “unpredictable”. 

 "modified": "2016-04-06T20:03:48.000Z", 
 "name": "Intrusion set name", 
 "description": "Intrusion set description", 
 “first_seen”: "2016-04-06T20:03:48.000Z", 
 “last_seen”: "2016-04-06T20:03:48.000Z", 
 “resource_level”: “attack-resource-level-ov entry”, 
 "aliases": [...], 
 "goals": [...], 
 “primary_motivation”: “attack-motivation-ov entry”, 
 “secondary_motivations”: [attack-motivation-ov entries] 
} 

INFRASTRUC
TURE 
KBMODEL 

Identity Individuals or groups, as well as classes of individuals. 
 
The Identity Class open vocabulary describes the type of entity 
that the Identity represents: individual, group, organization, 
class (e.g. the Domain Administrators in a system), unknown. 

{ 
 "type": "identity", 
 “id": "identity--uuid", 
 "created_by_ref": "identity--uuid", 
 "created": "2016-04-06T20:03:00.000Z", 
 "modified": "2016-04-06T20:03:00.000Z", 
 "name": "Identity name", 
 “description”: “Identity description”, 
 "identity_class": "identity-class-ov entry”, 
 “contact_information”: “Contacts” 
} 

INFRASTRUC
TURE 
KBMODEL 

Organization Organizations, or groups, organizations, or groups. { 
 "type": "organization", 
 “id": "organization--uuid", 
 "created_by_ref": "identity--uuid", 
 "created": "2016-04-06T20:03:00.000Z", 
 "modified": "2016-04-06T20:03:00.000Z", 
 "name": "Organization name", 
 “description”: “Organization description”, 
 “contact_information”: “Contacts” 
} 

INFRASTRUC
TURE 
KBMODEL 

Asset Asset of the Logical or Physical Infrastructure, like a PC, 
Application, ATM, etc. 
 
Keys follow ENISA Taxonomy for Logical (see figure 3 in D2.3) 
Keys follow FINSEC Taxonomy for Physical 

{ 
 "type": "asset", 
 "id": "asset--uuid" 
 "subtype": "Physical or Logical or both", 
 “organization”: “organization--uuid”, 
 ... standard ... 
 "credential”: “pass, key, bio info, … auth”,  
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  "hardware”: “[“external”: “...”], “[“internal”: “...”], 
 "firmware”: “[“external”: “...”], “[“internal”: “...”], 
 “Logical Op”: “Update functions…  “, 
 “Physical Op”: “Update functions…, “, 
 “User Info”: “Behavior data, “, 
 “User Health”: “Safety against, “, 
 “User Property”: “Physical prop, Virtual Prop“, 
... 
 
} 

INFRASTRUC
TURE 
KBMODEL 

Tool STIX Legacy - legitimate software that can be used by threat 
actors to perform attacks. 

{ 
 "type": "tool", 
 "id": "tool--uuid", 
 "created_by_ref": "identity--uuid", 
 "created": "2016-04-06T20:03:48.000Z", 
 "modified": "2016-04-06T20:03:48.000Z", 
 "labels": [...], 
 "name": "Tool name”,  
 “description”: “Tool description”, 
 “tool_version”: “Tool version”, 
 “kill_chain_phases”: [...] 
} 

THREAT KB Attack Pattern A type of Tactics, Techniques, and Procedures (TTP) that 
describes ways threat actors attempt to compromise targets. 
 
This is an extension of STIX to consider physical attacks 

{ 
 "type": "attack-pattern", 
 "id": "attack-pattern--uuid", 
 "created": "2018-04-06T20:03:00.000Z", 
 "modified": "2019-02-06T18:13:36.140Z", 
 "external_references": [...], 
 "name": "Attack pattern name", 
 "description": "Attack pattern description", 
 “kill-chain-phases”: [...] 
} 

THREAT KB Campaign A grouping of adversarial behaviors that describes a set of 
malicious activities or attacks that occur over a period of time 
against a specific set of targets. 
 
This is an extension of STIX to consider physical attacks 

{ 
 "type": "campaign", 
 "id": "campaign--uuid", 
 "created": "2018-04-06T20:03:00.000Z", 
 "modified": "2019-02-06T18:13:36.140Z", 
 "name": "Campaign name", 
 "description": "Campaign description", 
 “aliases”: [...], 
 “first_seen”: "2018-04-06T20:03:00.000Z", 
 “last_seen”: "2019-02-06T18:13:36.140Z", 
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 “objective”: “Campaign primary goal” 
} 

THREAT KB Malware A type of TTP, also known as malicious code and malicious 
software, used to compromise the confidentiality, integrity, or 
availability of a victim’s data or system. 
 

{ 
 "type": "???", 
 "id": "", 
 "created": "2016-05-12T08:17:27.000Z", 
 "modified": "2016-05-12T08:17:27.000Z", 
 "name": "", 
 "description": "Malware description", 
 "labels": [...], 
 “kill-chain-phases”: [...] 
} 

THREAT KB Tampering An attack to infrastructure aimed to modified the physical 
elements- 
 
This is an extension of STIX to consider specific physical attacks . 

{ 
 "type": "tampering", 
 "id": "tampering--uuid", 
 "created": "2016-05-12T08:17:27.000Z", 
 "modified": "2016-05-12T08:17:27.000Z", 
 "name": "ATM tampering", 
 "description": "Tampering description", 
 missing 
} 

THREAT KB Threat Actor Individuals, groups, or organizations believed to be operating 
with malicious intent. 
 
The Threat Actor Role open  vocabulary describes the different 
roles that a threat actor can play: agent, director, independent, 
infrastructure-architect, infrastructure-operator, malware-
author, sponsor. 
 
The Threat Actor Sophistication open vocabulary captures the 
skill level of a threat actor: none, minimal, intermediate, 
advanced, expert, innovator, strategic. 
 
Attack Resource Level is an open vocabulary that captures the 
general level of resources that a threat actor, intrusion set, or 
campaign might have access to.  
 

{ 
 "type": "threat-actor", 
 "id": "threat-actor--uuid", 
 "created_by_ref": "identity--uuid", 
 "created": "2016-04-06T20:03:48.000Z", 
 "modified": "2016-04-06T20:03:48.000Z", 
 "labels": [...], 
 "name": "Threat Actor name", 
 "description": "Threat Actor description", 
 "aliases": [...], 
 "roles": [threat-actor-role-ov entries], 
 "goals": [...], 
"sophistication": "threat-actor-sophistication-ov entry", 
 "resource_level": "attack-resource-level-ov entry", 
 "primary_motivation": "attack-motivation-ov entry", 
 “secondary_motivations”: [attack-motivation-ov entries], 
 “personal_motivations”: [attack-motivation-ov entries] 
} 
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It ranges from individual, club, contest, team, organization, to 
government. 
 
The Attack Motivation open vocabulary describes the Threat 
Actor or Intrusion Set's motivation. It ranges from “accidental”, 
“coercion”, “dominance”, “ideology”, “notoriety”, 
“organizational-gain”, “personal-gain”, “personal-satisfaction”, 
“revenge”, to “unpredictable”. 

ACTION Course of Action An action taken to either prevent an attack or respond to an 
attack. 
See Countermeasures in Fig 6. of D2.3 
 

{ 
 "type": "course-of-action", 
 "id": "course-of-action--uuid", 
 "created_by_ref": "identity--uuid", 
 "created": "2016-04-06T20:03:48.000Z", 
 "modified": "2016-04-06T20:03:48.000Z", 
 "name": "Course of action name", 
 "description": "Course of action description" 
} 

PRESENTATI
ON 

CP Threat 
Intelligence 

Cyber Physical Threat Intelligence 
 
Keys follow ENISA Taxonomy (see figure 5 in D2.3) 
 
 

{ 
 "type": "cpti", 
 "id": "cpti--uuid", 
 "asset": "asset--uuid", 
 “attack-pattern”: “attack-pattern--uuid”, 
 .. 
 “nefarious activity”: [ 
   “firmware_mod”: [...], 
   “remote_firmware_att”: [...], 
   “attack_persistence”: “Firmware modification/Bootkit”, 
   “info_access” ], 
 “eavesdropping”: [...], 
 “physical_att”: [...], 
 “damage”: [...], 
 “failures”: [...], 
 “outages: [...], 
 “legal”: [...] 
} 

COLLABORA
TION 

Report Collections of threat intelligence focused on one or more topics, 
such as a description of a threat actor, malware, physical attack 
technique, including contextual details. 
 

{ 
 TBD 
} 
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The Cyber Physical Threat Intelligence (CPTI) is the principal object since it collects and is enriched by threat information as soon as they are gathered from 
the probes and processed by the Predictive Analytics module. One or more CPTI objects are used to generate the output of the intelligence process, that is a 
report about ongoing or possible future attacks on one or more assets belonging to the infrastructure. The report can be accessed through the FINSEC 
dashboard and shared through the FINSEC collaborative module. 

FINSTIX Relationships 

FINSTIX basic objects will be put in relations with KB Objects while being transformed in the Engine. 

The different FINSTIX objects can be related through either direct key-value relationships. Starting from the infrastructure, each asset is owned by a unique 
organization, thus it contains a key-value relationship that links itself to an organization object. In addition, each probe is related to a single asset, for this 
reason the probe object contains a key-value relationship that points at the related asset. Moreover, an observed data is related to a specific asset, then it 
presents a key-value reference to specify the particular asset. Finally, the Cyber Physical Threat Intelligence (CPTI) contains a key-value reference to the threat 
target asset. 

 

In general, the Threat Knowledge Base objects are related through the Relationship Objects defined in STIX (see Table 8). 

 

 
Table 8: STIX Relationship Objects 

Source Relationship Type Target 

attack-pattern targets identity, vulnerability 
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uses malware, tool 

campaign attributed-to intrusion-set, threat-actor 

targets identity, vulnerability 

uses attack-pattern, malware, tool 

course-of-action mitigates attack-pattern, malware, tool, vulnerability 

indicator indicates attack-pattern, campaign, intrusion-set, malware, threat-actor, tool 

intrusion-set attributed-to threat-actor 

targets identity, vulnerability 

uses attack-pattern, malware, tool 

malware targets identity, vulnerability 

uses tool 

variant-of malware 

threat-actor attributed-to identity 

impersonates identity 

targets identity, vulnerability 

uses attack-patter, malware, tool 

tool targets identity, vulnerability 
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