

H2020 STOP-IT PROJECT

Enhancing the security of water critical infrastructure at strategic, tactical and operational level with solutions for preventing, detecting, responding to, and recovering from cyber and physical threats.

www.stop-it-project.eu

Physical and Cyber security integration and modelling at strategic and tactical levels

SPEAKER:

CHRISTOS MAKROPOULOS, PROFESSOR

OUR WORLD IS GOING DIGITAL - FAST!

We are in the middle of a **transformation** from "physical infrastructure" to "physical with some sensors" to "cyber-physical infrastructure"

Analog Digital

- Advantages are numerous: automation, adaptability, efficiency, functionality, reliability, safety, and usability of large systems
- But there is a catch: Exposure to an expanded attack surface...

Water infrastructures are becoming more and more Cyberphysical infrastructures

A cyber-physical approach for cyber-physical infrastructure

We argue that since the **cyber** and **physical** systems interact continuously, and **cascading effects** between them are not ease to track (or back-track to improve designs or identify sources of attacks) we need to combine cyber and hydraulic engineering knowledge to develop **cyber-physical security concepts and tools**.

STOP-IT: Tools & Technologies

Modular components of the STOP-IT risk management platform

Strategic & Tactical

Modular components of the STOP-IT risk management platform

Operational

Solutions that support:

- Strategic/tactical planning and post action assessment
- Operational decision making

towards cyber-physical security of water infrastructures

Scalable

Adaptable

Flexible

STOP-IT modules:

- Module1: Risk Assessment & Treatment Framework
- Module 2: Secure wireless sensor communications module
- Module 3: Toolbox of technologies for securing IT and SCADA
- Module 4:Toolbox of technologies for protecting against physical threats in CI
- Module 5: Cyber Threat Incident Service
- Module 6: Real-Time anomaly detection system
- Module 7: Public Warning System-Secure Information Exchange Technologies
- Module 8:Reasoning Engine
- Module 9: Enhanced Visualisation Interface for the water utilities

Module I Tools supporting Single & Multiple Scenarios Assessment

High level use-cases of Module I components:

- 1. Assess vulnerability (AVAT)
- 2. Navigate through potential risks & design/configure multiple risks scenarios
- 3. Simulate physical system interacting with their cyber layer
- 4. Visualise system's response and quantify/assess overall impacts
- 5. Assess scenarios of measure(s) implementation to the system

RAET Homepage

- Scenario Planner
 Identify risks and
 build a network specific
 threat scenario
- ☐ Stress Test Platform
 Simulate the scenario
- ☐ KPI tool
 Evaluate the scenario
 consequences
- ☐ Scenario Planner
 Explore appropriate
 treatment options

STOP-IT Scenario Planner: Identifying Risks Through FTs

A user-friendly graphical environment for the investigation of threat and cascading effect scenarios

GUI of FT Viewer of SP

Users may utilise any Quantity or Quality FT:

- Interact with STOP-IT generic predefined FTs for an all hazard approach (cyber-physical attacks, natural disasters, human error, etc.). OR
- Customise existing FTs or create new FTs by using the PSA Explorer and then
 Load the user- developed FTs (based on an open PSA format)

0

STOP-IT Scenario Planner: Identifying risks through FTs

Use a FT architecture to visualise the **event cascade** from a basic event (e.g. an attack) to the undesired end event (e.g. water supply disruption)

STOP-IT Scenario Planner: Identifying risks through FTs

For example, a scenario where a **tank level sensor is manipulated**, misleading the monitoring and control system to believe **the tank has enough water** ...

Scenario planner: A look behind the scenario we explore

Simplified schematic representation of WDN Cyber-physical control logic

Sensor data that lead to actuator response through PLC or SCADA control

STOP-IT Scenario Planner: Building a scenario

GUI of SP: Building an EPANET-CPA scenario

STOP-IT Building a Stress Test Procedure

STOP-IT Scenario Planner: Managing scenarios

✓ Scenario Planner Identify risks and build a network specific threat scenario

- ☐ Stress Test Platform
- Simulate the scenario 💸 🚻
- □ KPI tool

Evaluate the scenario consequences

☐ RRMD-RIDB

Explore appropriate **treatment** options

STOP-IT Stress-Testing Platform: Physical & cyber interlinked layers

The core Stress Testing Platform is an **EPANET based model**

Users:

- Have access to a **number of available simulation tools** (for cyber & physical and desired levels of analysis)
- Visualise the cyber network on top of the physical topology of a real network and define its control logic
- **Link** and **simulate the combined cyber and physical system** (explicitly modelling interactions) e.g. simulate combined system (a) under normal conditions, (b) after incorporating a risk reduction measures, (c) under cyber-physical attacks (denial-of-service, physical substance insertion into a node & sensor reading alterations)
- **Choose** between Pressure-Driven-Analysis (PDA) & Demand-Driven-Analysis (DDA) for water quantity and quality issues
- Assess system response under the examined scenarios through thematic maps and figures
- Compare impacts from different scenarios by selecting specific performance metric and KPIs

STOP-IT Stress-Testing Platform: RISKNOUGHT

- RISKNOUGHT simulates the flow of information within the cyber layer (SCADA) and the interconnection with physical processes (hydraulic model)
- Control logic of the WDN is explicitly formulated
- Hydraulics are solved interactively with EPANET (using PDA equations)

STOP-IT Stress-Testing Platform: RISKNOUGHT

New water quality simulation capabilities:

- ☐ Sensors can measure quality concentration indexes from coupled EPANET quality simulation
- Augments EPANET control logic by incorporating complex rules regarding quality monitoring:
 - Isolation of DMAs and PMAs
 - Main supply cut-off, cut-off supply from specific tanks
 - Activation of flushing units for contaminant removal
- ☐ Can model purely physical attacks (contaminant injection), cyber-attacks (false-positive contamination event by sensor manipulation) or combined cyber-physical attacks (contaminant injection and sensor manipulation)

STOP-IT Scenario Planner: Comparing scenarios

- ✓ Scenario Planner Identify risks and build a network specific threat scenario
- ✓ Stress Test Platform Simulate the scenario
- □ KPI tool
 Evaluate the scenario consequences

KPI tool: Assessment and detailed visualisation of results

Users can:

- can set the service levels for different districts & different thresholds for critical customers
- ☐ Visualise results and STOP-IT KPIs for any grouping they choose (DMAs etc.)

STOP-IT KPI tool: Interactive dashboard to assess and evaluate

STOP-IT KPI tool: Generating risk analysis reports

Fully automated report generation with a push of a button...

- Report System and DMA level Information in rich text
- Support Risk communication& Management documentation
- Metadata included for integrity and quality check
- Content can be tailored to utility's preferences

STOP-IT RAET Homepage

- ✓ Scenario Planner Identify risks and build a network specific threat scenario
- ✓ Stress Test Platform Simulate the scenario
- ✓ KPI toolEvaluate the scenario consequences
- Scenario Planner
 Explore appropriate treatment options

STOP-IT Scenario Planner: Incorporating measures

Incorporating measure(s) into scenarios and assessing their impact to system's performance

Main event characteristics

Matching Risks with Potential Risk Reduction Measures

Models & Tools capable to

Matching attributes, common

					in RIDB and RRMD							simulate events				
ID Name	Description	Direct Consequence	Node	Fault Tree	Туре	Event Type	Asset Catego	Threat ategories	Event Source Types		equenc		Risk Reduction Measures			
5271 Gate 9	Contamination from farming activities	Groundwater contamination	Intermediate	STOP-IT Water Quality FT	Groundwater	Pollution	Catchment A	a Physical	Human fault	Qualit	ty	Epanet MSX RISKNOUGHT RISKNOUGHT	14		ımbei ntial	r of RRM
5161 Basic Event 2	Serious spill from 7 inderedependent Industry CI accident	Industrial activities and waste disposal failure	Basic	STOP-IT Quantity FT	Surface Water	Pollution	Catchment Are Raw Water Bodies	a Physical	Human fault Interdependent Cl	Quant	tity	Epanet MSX RISKNOUGHT RISKNOUGHT	15			
5199 Basic Event 3	Pesticide seepage to 3 groundwater catchment	Contamination from farming activities	Basic	STOP-IT Quantity FT	Groundwater	Pollution	Catchment Are Raw Water Bodies	a Physical	Human fault	Quant	tity	Epanet MSX RISKNOUGHT RISKNOUGHT	12			
5200 Basic Event 3	Nutrient pollution of 4 groundwater catchment	Contamination from farming activities	Basic	STOP-IT Quantity FT	Groundwater	Pollution	Catchment Are Raw Water Bodies	a Physical	Human fault Natural phenomena	Quant	tity	Epanet MSX RISKNOUGHT RISKNOUGHT	12		_	
5162 Basic Event 2	Illegal disposal 8 practices from interdependent Industry Cl	Industrial activities and waste disposal failure	Basic	STOP-IT Quantity FT	Surface Water	Pollution	Catchment Are Raw Water Bodies	ea Physical	Interdependent CI	t Quant	tity	Epanet MSX RISKNOUGHT RISKNOUGHT	7	Lis	st Of	RRM
5198 Basic Event 3	Seepage of Interdependent Industry CI waste to groundwater catchment	Groundwater contamination	Basic	STOP-IT Quantity FT	Groundwater	Pollution	Catchment Are Raw Water Bodies	ea Physical	Interdependent CI	М	leasure ID	SupervisionOfExternals	Description Supervision of any external people entering the water utility or sensitive sites. Any people who enter sites and who are		erms and Geywords	Risk reduction mechanism Frequency/Likelihood
5160 Basic Event 2	Serious spill from 6 Interdependent Industry CI from cyber-physical attack	Industrial activities and waste disposal failure	Basic	STOP-IT Quantity FT	Surface Water	Pollution	Catchment Are Raw Water Bodies	ea Physical Cyber-Physical	Interdependent CI	t Qua	116	SourceWaterQualityControl	Control of raw water quality. The aim is to control the raw water quality in order to select the best	1		Frequency/Likelihood & Consequences
5065 Gate 190	Surface water system mismanagement	Unavailability from reservoir	Intermediate	Quantity FT	System	•	Catchment Are Raw Water Bodies	a		Qua	119		All air for aeration purposes in water treatment plants and water storage tanks should be filtered. Thus it is aimed	Filters should be installed at every air intake for aeration purposes. Furthermore, no openings for aeration purposes should be built		Frequency/Likelihood
							Water Abstraction Points			M27		Regular trainings, seminars, updates and informations or security issues should be implemented for all employees. Thus the staff is	1		Frequency/Likelihood & Consequences	
5066 Gate 191	Mislead surface water management system	Surface water system mismanagement	Intermediate	Quantity FT	Control System	Manipulation	Catchment Are Raw Water Bodies Water Abstraction Points	a	External attacker Internal attacker Human fault	Qu:	129	EmergencyPlans	always Setting up of emergency plans. Thus clear responsabilities, courses of action, procedures and contacts are defined and documented for emergency	A complete crisis plan should exist including responsabilities, pending tasks, important contacts etc. All tasks from the evaluation of the		Consequences
5064 Gate 155	Unavailability from reservoir	Unavailability from surface catchment area	Intermediate	STOP-IT Quantity FT	Surface Water	Interruption	Catchment Are Raw Water Bodies Water Abstraction Points	a		Qua M	130		Constructions of redundant infrastructures and assets along the whole water supply chain. Thus the failure of one component can, at	extractions, reservoir extractions, spring water), water treatment infrastructures (filtration,		Consequences
5068 Gate 193	Surface water management system functions on altered data	· · · · · · · · · · · · · · · · · · ·	Intermediate	STOP-IT Quantity FT	Control System	Manipulation	Catchment Are Raw Water Bodies Water	ea Cyber Cyber-Physical	External attacker Internal attacker	Qua	133		Construction of additional storage tanks. Thus periods of water scarcity can be bridged easier due to a higher amount of	adsorption,		Consequences

TOP-IT RAET SUPPORTS A COMPLETE WORKFLOW

- ✓ Scenario Planner Identify risks and build a network specific threat scenario
- ✓ Stress Test Platform Simulate the scenario
- ✓ KPI tool
 Evaluate the scenario consequences
- ✓ Scenario Planner
 Explore appropriate
 treatment options

THANK YOU FOR YOUR ATTENTION

stop-it-project.eu